ஆட்களம் (கணிதம்)
From Wikipedia, the free encyclopedia
Remove ads
கணிதத்தில் ஒரு செயலி (சார்பு) அதன் தன்மை காரணமாக ஒரு வரையறை செய்யப்பட்ட சாரா மாறிகளையே கொண்டிருக்கும். எடுத்துக்காட்டாக என்ற செயலியை கருதுக. அச்செயலி பூச்சியம் தவிர்ந்த ஏனைய மெய்யெண்களில் எல்லாம் வரையறை செய்யப்பட்டுள்ளது. எந்த ஒரு செயலிக்கும் அதன் சாரா மாறிகள் எடுக்கக்கூடிய பெறுமானங்களின் வரையறை அச்செயலியின் ஆட்களம் (Domain) ஆகும்.[1][2]
Remove ads
வரையறைகள்
ஒரு சார்பு f:X→Y கொடுக்கப்பட்டதாகக்கொள்வோம். இங்கு f இனுடைய உள்ளீடுகளின் கணம் X. இதற்கு f இன் ஆட்களம் எனப்பெயர். வெளியீடுகள் எந்த கணத்தில் போய்ச்சேருகிறதோ அந்த கணம் Y. அதற்கு இணையாட்களம் எனப்பெயர். வெளியீடுகளின் கணம் வீச்சு எனப்படும். f இன் வீச்சு , இணையாட்களம் Y இன் உட்கணமாகும். எப்பொழுது f இன் வீச்சு Y ஆகவே இருக்கிறதோ அப்பொழுது f ஒரு முழுக்கோப்பு அல்லது முழுச்சார்பு எனப்படும்.
சரியான முறையில் வரையறுக்கப்பட்ட ஒரு சார்பு ஆட்களத்திலுள்ள ஒவ்வொரு உறுப்பையும் இணையாட்களத்திலுள்ள ஒரு உறுப்புக்குக்கொண்டு செல்லவேண்டும்.
- f(x) = 1/x
என்ற சார்பு f(0) க்கு ஒரு மதிப்பையும் கொடுக்கமுடியாது. அதனால் R அதன் ஆட்களமாக இருக்கமுடியாது. இந்தமாதிரி சூழ்நிலையை இரண்டுவிதமாகக் கையாளலாம்.
ஒன்று, சார்பின் ஆட்களத்தை R\{0} என்று விதித்து விடலாம்.
அல்லது, இரண்டாவது வகையாக, f(0) வை தனிப்படியாக வரையறுத்து இந்த 'ஒழுக்கை' அடைத்துவிடலாம். அதாவது,
- f(x) = 1/x, x ≠ 0
- f(0) = 0,
என்று f இன் வரையறையிலேயே விதித்துவிட்டால், அப்பொழுது f எல்லா மெய்யெண்களிலும் வரையறுக்கப்பட்டதாக ஆகிவிடுகிறது. f இன் ஆட்களத்தை இப்பொழுது R என்றே கொள்ளலாம்.
எந்த சார்பும் அதன் ஆட்களத்தின் ஒரு உட்கணத்திற்கு கட்டுப்படுத்தப்படலாம்.
- g : A → B
என்ற சார்பை A இன் ஒரு உட்கணம் S க்கு கட்டுப்படுத்தப்பட்டால், அது
g |S : S → B.
என்று குறிக்கப்படும்.
Remove ads
வகுதிக்கோட்பாடு
வகுதிக்கோட்பாட்டில் (Category theory) சார்புகளுக்கு பதில் அமைவியங்கள் (morphisms) பேசப்படுகின்றன. அமைவியங்கள் என்பவை ஒரு பொருளிலிருந்து இன்னொன்றுக்குப் போகும் அம்புக்குறிகளே. அப்பொழுது ஒரு அமைவியத்தின் ஆட்சி அந்த அம்புக்குறிகள் எங்கு தொடங்குகின்றனவோ அந்தப் பொருள் தான்.
இவற்றையும் பார்க்கவும்
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads