இசுட்டூவர்ட்டின் தேற்றம்

From Wikipedia, the free encyclopedia

Remove ads

வடிவவியலில், இசுட்டூவர்ட்டின் தேற்றம் (Stewart's theorem) என்பது ஒரு முக்கோணத்தின் பக்கங்களுக்கும், விழுகோட்டிற்கும் இடையே உள்ள தொடர்பைக் குறித்தத் தேற்றம். இத்தேற்றத்தை இசுக்காட்லாந்திய கணிதவியலாளர் மாத்யூ இசுட்டூவர்ட்டு (Matthew Stewart) என்பார் 1746 இல் வெளியிட்டார் என்பதால் இப்பெயர் சூட்டப்பட்டுள்ளது[1].

தேற்றம்

ஒரு முக்கோணத்தின் மூன்று பக்கங்களின் நீளங்களாக , , ஆகியவை இருக்கட்டும். பக்கம் என்னும் பக்கத்தில் விழும் விழுகோட்டின் நீளமாக என்பது இருக்கட்டும். விழுகோடு , பக்கம் யை இருபகுதியாகப் பகுத்து அவற்றின் நீளங்கள் மற்றும் ஆக இருந்தால், இசுட்டூவர்ட்டின் தேற்றம் என்ன சொல்கின்றது என்றால்,

அப்பொலோனியசின் தேற்றம் என்பது இந்த விழுகோடு d என்பது முக்கோணத்தின் நடுகோடாக இருக்கும் பொழுது உண்மையாகும் இசுட்டுவர்ட்டின் ஒரு தனி வகை.

Remove ads

நிறுவல்

Thumb
இசுட்டூவர்ட்டின் தேற்ற நிறுவலுக்கான படம்

இத்தேற்றத்தைக் கோசைன் விதி கொண்டு நிறுவலாம்:[2]

θ ("தீட்டா") என்பது m, d ஆகியவற்றுக்கு இடையே உள்ள கோணமாகவும், θ′ ("தீட்டா கொட்டு") என்பது n, d ஆகியவற்றுக்கு இடையே உள்ள கோணமாகவும் இருக்கட்டும். இப்பொழுது θ′ என்பது θ வின் துணைக்கோணம் (θ′ = 180° - θ) , ஆகவே cos θ′ = −cos θ. இவ்விரு கோணங்களுக்குமான (θ, θ′) கோசைன் விதி:

முதல் சமன்பாட்டை n ஆல் பெருக்கி, இரண்டாவது சமன்பாட்டை m ஆல் பெருக்கிக் கூட்டியபின் cos θ ஐ மாற்றீடு செய்து விலக்கினனல், கிட்டுவது:

இதுவே நிறுவவேண்டிய முடிவு.

மாற்று வழியாகவும் நிறுவலாம். முக்கோணத்தின் முனையில் இருந்து செங்குத்துக்கோடு ஒன்றை வரைந்து, பித்தேகோரசின் தேற்றத்தைப் பயன்படுத்தி b, c, d ஆகிய மூன்றின் நீளத்தையும் செங்குத்துக்கோட்டின் நீளத்தோடு தொடர்புபடுத்தி எழுதலாம். பின்னர் இப்படி பெறும் சமன்பாட்டின் இருபக்கமும் மேலே உள்ள சமன்பாட்டுக்கு ஈடாகிவிடும்[3]

Remove ads

இவற்றையும் பார்க்கவும்

  • நிறை நடுப்புள்ளி வடிவவியல்

உசாத்துணை

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads