இருசமக்கூறிடல்
ஒரு வடிவத்தை இரு சம பாகங்களாகப் பிரிக்கும் வடிவியல் செயல் From Wikipedia, the free encyclopedia
Remove ads
வடிவவியலில் இருசமக்கூறிடல்(bisection) என்பது எந்தவொரு வடிவவியல் வடிவங்களையும் இரண்டு சமமான அல்லது சமான பாகங்களாக ஒரு நேர்கோட்டால் பிரிப்பது ஆகும். இக்கோடு இருசமவெட்டி(bisector) என அழைக்கப்படுகிறது. ஒரு கோட்டுத்துண்டின் மையப்புள்ளிவழிச் செல்லும் கோட்டுத்துண்டின் இருசமவெட்டியும், ஒரு கோணத்தின் உச்சி வழியே சென்று அக்கோணத்தை இருசம கோணங்களாகப் பிரிக்கும் கோண இருசமவெட்டியும் அதிக அளவில் பயன்படும் இருசமவெட்டிகள் ஆகும்.
முப்பரிமாண வெளியில், இருசமவெட்டியானது தளமாக அமையும்.

Remove ads
கோட்டுத்துண்டின் இருசமவெட்டி

ஒரு கோட்டுத்துண்டின் இருசமவெட்டியானது, அக்கோட்டுத்துண்டின் நடுப்புள்ளி வழியே செல்லும் கோடாகும். கோட்டுத்துண்டுகளின் இருசமவெட்டிகளில் குறிப்பிடத்தக்கது, நடுக்குத்துக்கோடாகும்(perpendicular bisector) இது, தரப்பட்ட கோட்டுத்துண்டின் நடுப்புள்ளி வழி செல்வது மட்டுமல்லாது, கோட்டுத்துண்டைச் செங்குத்தாகவும் வெட்டுகிறது. மேலும் நடுக்குத்துக்கோட்டின் மேல் அமையும் ஒவ்வொரு புள்ளியும் அக்கோட்டுத்துண்டின் இரு முனைப்புள்ளிகளிலிருந்தும் சமதூரத்தில் அமையும்.
ஒரு கோட்டுத்துண்டை இருசம பாகங்களாகப் பிரிப்பதற்கு,
- அக்கோட்டுத்துண்டின் இருமுனைகளையும் மையமாகக் கொண்டு சமஆரமுள்ள இருவட்டங்கள் வரைய வேண்டும்.
- இவ்விரு வட்டங்களும் வெட்டிக் கொள்ளும் இரு புள்ளிகளையும் இணைத்து வரையப்படும் கோடு, தரப்பட்ட கோட்டுத்துண்டின் நடுப்புள்ளி வழிச்சென்று அதனை இருசமக்கூறிடும்.
- இக்கோடானது, கோட்டுத்துண்டை இரண்டாகப் பிரிப்பது மட்டுமின்றி, அதற்கு செங்குத்தாகவும் அமையும். * எனவே இந்த வரைமுறை கோட்டுத்துண்டின் இருசமவெட்டியை மட்டுமல்லாது, நடுக்குத்துக்கோட்டையும் தருகிறது.
Remove ads
கோண இருசமவெட்டி

ஒரு கோணத்தின் இருசமவெட்டியானது அக்கோணத்தைச் சம அளவுள்ள இரு கோணங்களாகப் பிரிக்கிறது. கோண இருசமவெட்டியின் மீது அமையும் புள்ளிகள், கோணத்தின் இரு கரங்களிலிருந்தும் சம தூரத்தில் இருக்கும்.
உட்கோண இருசமவெட்டி என்பது, 180° -க்குக் குறைவான அளவுள்ள ஒரு கோணத்தை இரு சமமான கோணங்களாகப் பிரிக்கும் கதிராகும்.(ray of a line)
வெளிக்கோண இருசமவெட்டி என்பது, அக்கோணத்தின் எதிர் கோணத்தை (180° -க்கு அதிகமான கோணம்) இருசமமான கோணங்களாகப் பிரிக்கும் கதிராகும்.
கோணத்தை இருசமக்கூறிடல்(நேர்விளிம்பு மற்றும் கவராயம் கொண்டு):
- கோணத்தின் உச்சியை மையமாகக் கொண்டு ஒரு வட்டம் வரைதல் வேண்டும்.
- இந்த வட்டம் கோணத்தின் கரங்கள் ஒவ்வொன்றையும் ஒரு புள்ளியில் சந்திக்கும்.
- இந்த இரு புள்ளிகளையும் மையமாக வைத்து சமமான ஆரத்தில் இரு வட்டங்கள் வரைய வேண்டும்.
- இவ்விரு வட்டங்களும் வெட்டும் இரண்டு புள்ளிகள் தீர்மானிக்கும் கோடு, கோண இரு சமவெட்டி ஆகும்.
முக்கோணத்தின் கோண இருசமவெட்டிகள்
ஒரு முக்கோணத்தின் மூன்று கோண இருசமவெட்டிகளும் ஒரு புள்ளியில் சந்திக்கும். அப்புள்ளியானது, முக்கோணத்தின் உள்வட்ட மையம் என அழைக்கப்படும்.
முக்கோணத்தின் பக்க நீளங்கள் எனில்:
- முக்கோணத்தின் அரைச்சுற்றளவு:
- -பக்கத்துக்கு எதிர் கோணம் A.
- கோணம் A -ன் இருசமவெட்டியின் நீளம்:[1]
= .
முக்கோணம் ABC -ல்
A கோணத்தின் இருசமவெட்டியானது, எதிர்பக்கமான -ஐ, m மற்றும் n, நீளமுள்ள கோட்டுத்துண்டுகளாகப் பிரிக்குமானால்,[1]
- ஆகும்.
இங்கு b , c என்பவை முறையே, உச்சிகள் B மற்றும் C -ன் எதிர் பக்கங்கள் ஆகும். கோணம் A -ன் இருசமவெட்டியால் அதன் எதிர்பக்கமான -ஆனது, b : c என்ற விகிதத்தில் பிரிக்கப்படுகிறது.
கோணங்கள் A, B, மற்றும் C -ன் இருசமவெட்டிகளின் நீளங்கள் முறையே மற்றும் எனில்,[2]
கோண இருசமவெட்டி தேற்றமானது, ஒரு முக்கோணத்தில் ஒரு கோணத்தின் இருசமவெட்டியானது அக்கோணத்தின் எதிர் பக்கத்தைப் பிரிக்கும் கோட்டுத்துண்டுகளின் நீளங்களைப் பற்றிக் கூறுகிறது. இத்தேற்றத்தின்படி, அக்கோட்டுத்துண்டுகளின் நீளங்களின் விகிதமானது மற்ற இரு பக்கங்களின் நீளங்களின் விகிதத்திற்கு சமமாகும்.
சாய்சதுரத்தின் கோண இருசமவெட்டிகள்
சாய்சதுரத்தின் ஒவ்வொரு மூலைவிட்டமும் எதிர் கோணங்களை இருசமக் கூறிடுகின்றன.
Remove ads
முக்கோணத்தின் பரப்பு இருசமவெட்டிகளும் பரப்பு-சுற்றளவு இருசமவெட்டிகளும்
முக்கோணத்தின் பரப்பை இருசமக்கூறிடும் கோடுகள் எண்ணற்றவை. முக்கோணத்தின் நடுக்கோடுகள் மூன்றும் அவற்றுள் அடங்கும். நடுக்கோடுகள் மூன்றும் ஒன்றையொன்று சந்திக்கும். அவை மூன்றும் சந்திக்கும் புள்ளி முக்கோணத்தின் நடுக்கோட்டுச்சந்தியாகும்(centroid). ஒரு முக்கோணத்தின், பரப்பு இருசமவெட்டிகளிலேயே நடுக்கோடுகள் மூன்று மட்டும்தான் நடுக்கோட்டுச்சந்தி வழியே செல்லும் இருசமவெட்டிகள் ஆகும். மேலும் மூன்று பரப்பு இருசமவெட்டிகள், முக்கோணத்தின் பக்கங்களுக்கு இணையான கோடுகளாகும். ஒரு பக்கத்துக்கு இணையான இருசமவெட்டியானது, முக்கோணத்தின் மற்ற இரு பக்கங்களையும் .[3] என்ற விகிதத்திலுள்ள கோட்டுத்துண்டுகளாகப் பிரிக்கும். இந்த ஆறு பரப்பு இருசமவெட்டிகளும் மும்மூன்றாக சந்திக்கின்றன. மூன்று நடுக்கோடுகள் சந்திக்கின்றன. மற்றும் ஒவ்வொரு நடுக்கோடும், முக்கோணத்தின் பக்கங்களுக்கு இணையான பரப்பு இருசமவெட்டிகள், இரண்டினைச் சந்திக்கிறது.
ஒரு முக்கோணத்தின் பரப்பு மற்றும் சுற்றளவு இரண்டையும் இருசமக்கூறிடும் கோடானது, அம்முக்கோணத்தின் உள்வட்ட மையத்தின் வழியே செல்லும். இந்த வகையான இருசமவெட்டிகள் ஒரு முக்கோணத்திற்கு ஒன்று, இரண்டு அல்லது மூன்றுவரை இருக்கலாம். உள்வட்ட மையத்தின் வழிச் செல்லும் ஒரு கோடானது, பரப்பு மற்றும் சுற்றளவு இரண்டையும் இருசமக்கூறிடுவதாக இருந்தால், இருந்தால் மட்டுமே, அது பரப்பு அல்லது சுற்றளவு இரண்டில் ஏதாவது ஒன்றை இருசமக்கூறிடும்.[4]
இணைகரத்தின் பரப்பு மற்றும் மூலைவிட்ட இருசமவெட்டிகள்
இணைகரத்தின் நடுப்புள்ளி வழிச் செல்லும் கோடு அதன் பரப்பை இருசமக்கூறிடும்.[5] மேலும் இணைகரத்தின் மூலைவிட்டங்கள் இரண்டும் ஒன்றையொன்று இருசமக்கூறிடும்.
மேற்கோள்கள்
வெளி இணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads