இருசமபக்க முக்கோணத் தேற்றம்
From Wikipedia, the free encyclopedia
Remove ads
இருசமபக்க முக்கோணத் தேற்றத்தின்படி (isosceles triangle theorem), ஒரு இருசமபக்க முக்கோணத்தின் இரண்டு சமபக்கங்களின் எதிர்க் கோணங்களிரண்டும் சமமாக இருக்கும்”. யூக்ளிடின் எலிமெண்ட்சில் புத்தகம் 1 இல் கூற்று 5 ஆக தரப்பட்டுள்ள இம்முடிவு பான்சு அசினோரம் (pons asinorum) என அழைக்கப்படுகிறது.

இத்தேற்றத்தின் மறுதலையும் உண்மையாகும். அதாவது, ஒரு முக்கோணத்தின் இரண்டு கோணங்கள் சமமாக இருந்தால், அம்முக்கோணம் இருசமபக்க முக்கோணமாகும் (அக்கோணங்களுக்கு எதிரேயுள்ள இரு பக்கங்களின் நீளங்களும் சமமாக இருக்கும்).
Remove ads
பொதுவாகப் பாடப்புத்தகங்களில் தரப்படும் இத்தேற்றத்தின் நிறுவல் கீழே தரப்பட்டுள்ளது. இந்த நிறுவல் முறையில் இருசமபக்க முக்கோணத்தின் சமபக்கங்களுக்கு இடைப்பட்ட உச்சிக்கோணத்தின் இருசமவெட்டி வரைந்து கொள்ளப்படுகிறது.[1] யூக்ளிட் அளித்த நிறுவலைவிட இது எளிதானதாக இருப்பினும், யூக்ளிடின் கூற்றுகளில் ஒன்பதாகவுள்ள கோண இருசமவெட்டியைக் கொண்டு அதற்கு முன்னுள்ள ஐந்தாவது கூற்று நிறுவப்படுகிறது.

ஒரு இருசமபக்க முக்கோணம், . கோணத்தின் இருசமவெட்டி வரைய அது முக்கோணத்தின் பக்கம் BC ஐ X இல் சந்திக்கிறது.
ஆகிய இரு முக்கோணங்களில்:
- பொதுப்பக்கம்
எனவே பக்கம்-கோணம்-பக்கம் விதிப்படி
இரு முக்கோணங்கள் சர்வசமம் எனில் அவற்றின் ஒத்த பக்கங்களும் கோணங்களும் சமமானவை என்பதால்
X புள்ளியை பக்கம் BC இன் நடுப்புள்ளியாகக் கொண்டு இத்தேற்றமானது பிரெஞ்சு கணிதவியலாளர் லெஜெண்டிரால் நிறுவப்பட்டுள்ளது.[2] அந்நிறுவலில், சர்வசமம் என நிறுவ பக்கம்-பக்கம்-பக்கம் எடுகோள் பயன்படுத்தப்பட்டுள்ளது.
Remove ads
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads