இருபடிய நேர் எதிர்மை
From Wikipedia, the free encyclopedia
Remove ads
கணிதத்தில் எண் கோட்பாடு என்ற பிரிவில் இருபடிய நேர் எதிர்மை (Quadratic Reciprocity) என்பது ஒரு மையக்கருத்து.[1][2][3]
அறிமுகம்
லெஜாண்டர் ஏற்கனவே இருபடிய எச்சங்களைப் பற்றிய ஒரு சுவையான விதியைக் கண்டுபிடித்திருந்தார். அது, என்ற இரண்டு ஒற்றைப்படைப்பகாதனிகளைப் பொருத்த விஷயம்.அதாவது,அவை ஒன்றுக்கொன்று இருபடிய எச்சங்களா அல்லது இருபடிய எச்சமல்லாதவைகளா என்பதைப் பற்றிய இரு தேற்றங்கள்:
- இரட்டைப்படை எண்ணாகுமேயானால்,
- , மாடுலோ க்கு ஒரு இருபடிய எச்சமாக இருந்தால், இருந்தால்தான், , மாடுலோ p க்கு ஒரு இருபடிய எச்சமாக இருக்கும்.
- ஒற்றைப்படை எண்ணாகுமேயானால்,
- , மாடுலோ q க்கு ஒரு இருபடிய எச்சமல்லாததாக இருந்தால், இருந்தால்தான், , மாடுலோ p க்கு இருபடிய எச்சமாக இருக்கும்.
இந்த விதிக்கு இருபடிய நேர் எதிர்மை (Law of Quadratic Reciprocity) என்று பெயர் வைத்ததே காஸ் தான். பெயர் வைத்ததோடு மட்டுமல்லாமல் இவ்விதிக்கு ஒரு கண்டிப்பான (rigorous) நிறுவல் கொடுத்தவரும் அவரே.
Remove ads
இன்னொரு சமமான வாசகம்
p, q இரண்டும் ஒற்றைப்படை பகா எண்கள் எனக்கொள்வோம். கீழுள்ள இரண்டு சமான உறவுச் சமன்பாடுகளைக் கவனி.
- ... (1)
- ... (2)
அல்லது அல்லது இரண்டுமோ உண்மையென்றால்,
- (1) மற்றும் (2) இரண்டும் தீர்வுடையவை அல்லது இரண்டும் தீர்வல்லாதவை.
ஆகிய இரண்டும் உண்மையென்றால்
- (1), (2) ஆகிய இரண்டில் ஒன்று தீர்வுடையதாகவும் மற்றொன்று தீர்வல்லாததகவும் இருக்கும்.
Remove ads
எடுத்துக்காட்டுகள்
- ; உண்மையில், க்குப்பல தீர்வுகள்: 8, 25, 42, ...
- ; உண்மையில், க்குப்பல தீர்வுகள்: 2, 15, 28, ....
இங்கு என்பதையும் கவனிக்க.
- ; உண்மையில், க்குப்பல தீர்வுகள்: 2, 9, 16, ...
ஆனால் 7, 11இனுடைய எச்சமல்லாதது. ஏனென்றால்,
இங்கு என்பதையும் கவனிக்க.
Remove ads
வரலாறு
ஆய்லரும் லெஜாண்டரும் முயற்சி செய்து நிரூபிக்கத் தவறின இத்தேற்றத்திற்கு, 19 வயதே ஆகியிருந்த காஸ் தன்னுடைய நூல் Disquisitiones Arithmetica வில் முழுநிறுவலும் கொடுத்தது ஒரு பெரிய சாதனை. எண்கோட்பாடுதான் கணிதத்தின் இராணி என்றும், இருபடிய நேர் எதிர்மையை எண் கோட்பாட்டின் சிகரமென்றும் கூறுவார் காஸ். அவர் இவ்விதியை மிகவும் நேசித்ததால், தன் ஆயுளில் திரும்பத் திரும்ப இதை அலசிப்பார்த்து, இதற்கு ஆறு நிறுவல்கள் கொடுத்திருக்கிறார்.
இருபடிய நேர் எதிர்மையை இன்னும் நுண்பியப்படுத்தி, காஸ் நாற்படிய நேர் எதிர்மை ஒன்றையும் கண்டுபிடித்தார்.
Remove ads
இவற்றையும் பார்க்கவும்
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads