காட்டீசியன் ஆள்கூற்று முறைமை
From Wikipedia, the free encyclopedia
Remove ads
கணிதவியலில், காட்டீசியன் ஆள்கூற்று முறைமை அல்லது கார்ட்டீசியன் ஆய முறைமை (Cartesian coordinate system) என்பது, இட வெளியில் உள்ள ஒவ்வொரு புள்ளியையும் துல்லியமாய்க் குழப்பம் ஏதும் இன்றிக் குறிக்கப் பயன்படும் ஒரு முறை. எடுத்துக்காட்டாக ஒரு தளத்திலுள்ள புள்ளிகள் ஒவ்வொன்றையும் இரண்டு எண்கள் மூலமாக இம்முறைப்படி வேறுபடுத்திக் குறிக்கலாம். இந்த இரண்டு எண்களும் குறிப்பிட்ட தொடக்கப் புள்ளியில் இருந்து அளந்தறியப்படும். இவை x- ஆள்கூறு, y- ஆள்கூறு என அழைக்கப்படுகின்றன. ஆள்கூறுகளைத் தீர்மானிப்பதற்காக ஒன்றுக்கொன்று செங்குத்தான இரண்டு கோடுகள் வரையப்படுகின்றன இவைதான் ஒப்பீட்டுச் சட்டக் கோடுகள். இவை x- அச்சு, y- அச்சு எனப்படுகின்றன. x- அச்சைக் கிடை நிலையிலும், y- அச்சை நிலைக்குத்தாகவும் வரைவது மரபாகும். இக்கோடுகள் ஒன்றையொன்று வெட்டும் புள்ளி தொடக்கப்புள்ளி எனப்படும். இப்புள்ளியிலிருந்து தொடங்கி அச்சுக்கள் வழியே அருகிலுள்ள படத்தில் காட்டியபடி, அளவுகள் குறிக்கப்படுகின்றன. இவ்விரு அச்சுக்களும் உள்ள தளத்திலுள்ள ஏதாவது ஒரு புள்ளி, இவ்விரு அச்சுக்களிலும் இருந்து எவ்வளவு தூரத்தில் இருக்கிறது எனக் குறிப்பதன்மூலம் அப்புள்ளியை ஏனைய புள்ளிகளிலிருந்து வேறுபடுத்தி அறியலாம். அதாவது அவ்விரு எண்களும், குறிப்பிட்ட புள்ளிக்குரிய தனித்துவமான இயல்பு ஆகும். y- அச்சிலிருந்து ஒரு புள்ளியின் தூரம் அப்புள்ளியின் x- ஆள்கூறு ஆகும். x- அச்சிலிருந்து அதன் தூரம், y- ஆள்கூறு ஆகும். ஒரு புள்ளியின் x- ஆள்கூறு 2 அலகு ஆகவும், y- ஆள்கூறு 3 அலகுகளாகவும் இருப்பின் அப்புள்ளியை (2,3) எனக் குறிப்பது மரபு.


ஒரு தளத்தில் மட்டுமன்றிக் காட்டீசியன் ஆள்கூற்று முறைமையை முப்பரிமாண வெளியிலும் பயன்படுத்த முடியும். இதன்மூலம் ஒரு இட "வெளி"யில் உள்ள புள்ளியொன்றை வேறுபடுத்திக் குறிக்க முடியும். இதற்கு ஒன்றுக்கொன்று செங்குத்தான மூன்று திசையில் உள்ள கோடுகள் பயன்படுகின்றன. அதாவது இங்கே 3 அச்சுகள் இருக்கும். மூன்றாவது அச்சு z-அச்சு ஆகும். இதனால் இட வெளியில் உள்ள ஒரு புள்ளியைக் குறிப்பிட மூன்று அச்சுகளிலிருந்தும் அளக்கப்படும் தொலைவுகளைக் (x, y, z) கொடுப்பதன்மூலம் குறிக்கப்படுகின்றது.[1][2][3]
காட்டீசியன் ஆள்கூற்று முறைமையைப் பயன்படுத்தி, வடிவகணித வடிவங்களைச் சமன்பாடுகள் மூலம் குறிக்கமுடியும். அதாவது, குறித்த வடிவத்திலுள்ள ஒவ்வொரு புள்ளியின் x, y ஆள்கூறுகளுக்கு இடையேயான கணிதத் தொடர்பை ஒரு சமன்பாடடால் முற்றிலுமாய் விளக்க முடியும். எடுத்துக்காட்டாக, 2 அலகு ஆரையைக் கொண்ட வட்டம் ஒன்றை x² + y² = 22 எனக் குறிப்பிடலாம். (படம்-2 ஐப் பார்க்கவும்)
Remove ads
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads