கியார்கு கேன்ட்டர்

From Wikipedia, the free encyclopedia

கியார்கு கேன்ட்டர்
Remove ads

கியார்கு கேன்ட்டர் (Georg Cantor; மார்ச் 3, 1845 - சனவரி 6, 1918) வரலாற்றுப் புகழ்மிக்க கணிதவியல் கருத்துக்களை முன் வைத்த செர்மன் கணிதவியலாளர் ஆவார். இவர் முன்வைத்த கணக் கோட்பாடுகள் கணிதவியலுக்கே அடித்தளம் தரும் அடிப்படைக் கொள்கை என்று போற்றப்படுகின்றன. இவருடைய முழுப்பெயர் கியார்கு ஃவெர்டினாண்டு லூடுவிக் ஃவிலிப் கேன்ட்டர் (Georg Ferdinand Ludwig Philipp Cantor) என்பதாகும். இவர் கணங்களுக்கு இடையே தனித்தனியாய் ஒன்றுக்கு-ஒன்றாக தொடர்பு பார்ப்பது பற்றிய சிறப்பை நிலைநாட்டினார், முடிவிலி மற்றும் சீரடுக்குக் கணங்களை வரையறுத்தார், மெய் எண்கள், இயல் எண்களைக் காட்டிலும் அதிகமானவை என்று நிறுவினார். கேன்ட்டரின் தேற்றத்தின் நீட்சியின்படி "முடிவிலா (எண்ணற்ற) முடிவிலிகள்" உள்ளன.

விரைவான உண்மைகள் கியார்கு கேன்ட்டர்Georg Cantor, பிறப்பு ...

கேன்ட்டரின் வரைமீறு எண்கள் (transfinite numbers) என்னும் கோட்பாடு கணிதவியலாளர்கள், மெய்யியலாளர்கள், மற்றும் சமயவாதிகளிடமிருந்து மிகுந்த எதிர்ப்பைச் சந்தித்தது. புகழ்மிக்க கணிதவியலாளர்களாகிய லியோபோல்டு குரோனெக்கர் (Leopold Kronecker), என்றி பாயின்க்கரே (Henri Poincaré) முதலானோரும் [1], பின்னர் எர்மன் வெய்ல் (Hermann Weyl), புரௌவெர் (L.E.J. Brouwer) முதலானோரும் இக்கோட்பாடுகளைக் கடுமையாக எதிர்த்தனர். லூடுவிக் விட்கென்சுட்டைன் (Ludwig Wittgenstein) என்னும் மெய்யியலாளரும், கிறித்தவ மதத்தினரும் எதிர்த்தனர் [2] ஒருமுறை வரைமீறு எண்களின் கோட்பாட்டை எல்லாக் கடவுள்களையும் ஏற்கும் மதத்துக்கு (pantheism) ஒப்பாகக் கூறினார்[3] . பாயின்க்கரே கேன்ட்டரின் கருத்தை கணிதவியலில் "பெரும் நோய்" ("grave disease") என்றும், குரோனெக்கர், கேன்ட்டரை "அறிவியல் ஏமாற்றுக்காரர்" ("scientific charlatan"), "இளைஞர்களை கெடுப்பவர்" ("corrupter of youth.") என்றெல்லாம் கூறி கடுமையாக தாக்கினர்.[4] கேன்ட்டர் இறந்து பல பத்தாண்டுகள் கழித்தும் விட்கென்ஸ்ட்டைன் கடுமையான சொற்களால் அவருடைய கணிதவியல் கருத்துக்களைத் தாக்கினார் ("முற்றிலும் பொருளற்றது", "ridden through and through with the pernicious idioms of set theory," , "utter nonsense", "laughable" and "wrong".)[5]

ஒருபுறம் இப்படிக் கடுமையாக தாக்குண்டாலும், அனைத்துலகப் புகழும், பரிசுகளும் அவருக்கு கிடைத்தன. இலண்டனில் உள்ள ராயல் சொசைட்டி 1904ல் சில்வெசுட்டர் பதக்கம் தந்து பெருமை படுத்தியது [6]. இன்று கணிதவியலாளர்கள் கேன்ட்டரின் கோட்பாடுகள் கணிதவியலுக்கே அடித்தளம் தரும் முதன்மைப் படைப்புகள் என்று பாராட்டுகின்றனர்.

Remove ads

கோட்டை இடிந்தது

ஐரோப்பிய மறுமலர்ச்சிக்காலமான 15ஆம் நூற்றாண்டு முதல் 19ம் நூற்றாண்டின் முன்பாதி வரையில் கணிதம் வளர்ந்துவந்த விதத்தில் மூன்று சிக்கல்கள் கணிதவியலாளர்களின் ஓயாத தலைவலியாகவே இருந்து வந்தன. அவை:

இம் மூன்றும் அடிக்கடி ஒன்றுக்கொன்றுடன் சம்பந்தப்படுத்தப்பட்டு குழப்பத்தை உண்டாக்கின. நுண்ணளவுக் கருத்தை நியூட்டனும் லைப்னிட்சும் அவர்களிடைய நுண்கணிதத்தில் உண்டாக்கிய எல்லை(வரை) என்ற கருத்தினால் விளக்கம் கொடுக்க முயன்றனர். பிறகு அக்கருத்தே 19ஆம் நூற்றாண்டின் தலைசிறந்த பகுவியல் நிபுணர்கள் காழ்சி, (Cauchy) காஸ், வியர்சிட்ராசு முதலியோரால் விளக்கப்படும் வரையில் சரியாகப் பயன்படுத்தப்படவில்லை. அவர்களுடைய 'எல்லை'க்கருத்தும், 'தொடர்ச்சி' என்ற கருத்தும் 19ஆம் நூற்றாண்டில் பகுவியலில் ஏற்பட்ட 'கண்டிப்பு' (Rigour) என்ற சீராக்கத்தினால் பல விதமாகத் துடைத்து மெருகு கொடுக்கப்பட்டது. ஆனால் இவ்விரண்டு கருத்துகளும் சீராக்கப்பட்டபின்பும் 'முடிவிலி' என்ற கருத்தில் ஒரு முக்கியமான பாகம் விளக்கப்படாமலே இருள் படர்ந்திருந்தது.

இவ்விருளிற்குக் காரணம், முடிவிலி என்ற கருத்தின் கருவில் இரண்டு வேடங்கள் உள்ளன என்பது.

ஒன்று ஒரு மாறி முடிவுள்ள அளவுகளையெல்லாம் தாண்டி அளவில்லாமல் பெருகிக்கொண்டே போகும் போது, அது முடிவிலியை நோக்கிச் செல்கிறது என்று வழக்கில் சொல்லப்பட்டு வந்த நிலை; அதாவது என்ற நிலை.
இரண்டாவது ஒரு எண் மாறாமல் ஆனால் எல்லா முடிவுள்ள எண்களையும் விடப் பெரியதாகவுள்ள நிலை; அதாவது ஒரு முடிவிலியே; இதை என்று சொல்லி வந்தார்கள்.

இவ்விரண்டு வேடங்களில் முதல் வேடத்தின் சிக்கல்களை 19ஆம் நூற்றாண்டின் பகுவியல் சிங்கங்கள் அவிழ்த்து விட்டு விட்டன. ஆனால் இரண்டாவது வேடத்தின் நிழல்கள் அத்துடன் கலக்கப்பட்டு பல குழப்பங்களுக்குக் காரணமாயிருந்தன.

இதை போக்கியவர் கேன்ட்டர். அதில் வரலாற்றுச் சிறப்பு என்னவென்றால், கேன்ட்டரின் முடிவுகளால், இக்குழப்பம் தீர்ந்த சிறப்பு சிறப்பல்ல; அவரின் தேற்றங்களால், இருபதாம் நூற்றாண்டின் கணிதத்தில் ஒரு புது சகாப்தமே தோன்றியதுதான் சிறப்பு. அதனால் கேன்ட்டரின் கணக்கோட்பாடு கணிதத்தின் மேகங்கள் படிந்த பழைய கோட்டையையே இடித்துவிட்டு புதிதான கணிதச் செயல்பாடுகளுக்கு ஒரு அடித்தளக் கோட்பாடாக அமைந்தது.

Remove ads

வாழ்க்கை

கியார்கு கேன்ட்டர் யூதர் குடும்பத்தில் உருசியாவில் செயின்ட் பீட்டர்சுபர்க்கில் பிறந்தார். அவர் தந்தை டென்மார்க் நாட்டில் பிறந்து உருசியாவில் வணிகத் தொழில் புரிந்துகொண்டிருந்தார். உடல்நிலை காரணமாக 1856 இல் செருமனியில் பிரான்க்ஃபர்ட் நகருக்குக் குடிபெயர்ந்தார். கியார்குவின் குடும்பத்தில் தாய் வழியில் கலை உணர்வும் இசைத் திறன்களும் நிறைய இருந்தன. கியார்குவின் கலை ஆர்வம் அவருடைய கணித ஆய்வுகளில் மலர்ந்தன. 15 வயதுக்கு முன்னரே அவருடைய கணித ஆர்வமும் திறமையும் அவருடைய ஆசிரியர்களுக்கு வெளிப்பட்டுவிட்டன. ஆனால் அவர் தந்தை அவரை பொறியியலில் மேற்படிப்பு படிக்கவைக்க முயன்று நல்ல பிராட்டெசுட்டெண்ட் கிறித்தவனாகவும் தந்தைசொல் மிக்க மந்திரமில்லை என்றும் இருந்த மகனை அத்திசையிலேயே இரண்டாண்டுகள் இயக்கிவிட்டார். இவ்வியக்கம் பலனில்லாமல் போகவே கியார்கு மறுபடியும் கணிதப் படிப்புக்கே வந்தார். ஆனால் இவ்விரண்டாண்டுகளில் அவருடைய தன்னம்பிக்கை ஆட்டம் கண்டுவிட்டது. இதுவே பிற்காலத்தில் அவரால் கிரானெக்கர் முதலியோரின் கணிதத்தாக்குதலுக்கு ஈடுகொடுக்கமுடியாமல் செய்துவிட்டது.

Remove ads

முடிவிலி என்ற எண்ணளவை

1862 இல் இசூரிக் நகரில் பல்கலைக்கழகப் படிப்பைத்தொடங்கினார். அடுத்த ஆண்டே பெர்லின் பல்கலைக்கழகத்திற்கு மாறினார். கணிதம், தத்துவம், இயற்பியல் இவை மூன்றும் முக்கிய பாடங்கள். கணிதத்தில் அவருடைய ஆசிரியர்களில் இருவர் கம்மர், வியர்சிட்ராசு ஆகிய இரு தலைசிறந்த கணிதவியலாளர்கள். மூன்றாமவரும் (கிரானெக்கர்) தலைசிறந்தவர்தாம்; ஆனால் பிற்காலத்தில் கேண்ட்டரின் முழு எதிரியாகப் போகிறவர். 1867 இல் காசின் Disquisitiones Arithmeticae வைப்படித்து ஆய்வு செய்து முனைவர் பட்டம் பெற்றார். முப்பதாவது வயது வரையில் ஒன்றும் பெரிதாக சாதித்துவிடவில்லை.

30ஆம் வயதில் (1874 இல்) கிரெல்சு ஆய்வுப்பத்திரிகையில் அவருடைய பெயரில் வெளியான கட்டுரை கணித உலகில் ஒரு புரட்சியை உண்டாக்கியது. அவ்வாண்டிலிருந்து 1897 வரையில் பல கட்டுரைகள் தொடர்ந்து வந்தன. இவைகளின் நுணுக்கங்களை எண்ணுறுமையும் எண்ணுறாமையும் என்ற கட்டுரையில் பார்க்கவும். முக்கியமாக முடிவிலி என்ற எண்ணளவை 'ஒன்றுக்கொன்றான இயைபு' (one-one correspondence) என்ற கருத்தை அடிப்படையாகக்கொண்டு புனையப்பட்ட கருத்து; அதை சாதாரண இயலெண்கள் போல் செயல்படுத்தமுடியாது. இவ்விதம் தொடங்கி அவருடைய முடிவுகள் ஒரு நீண்ட கோட்பாடாகவே மலர்ந்தன. அவருடைய தேற்றங்களில் மிகவும் புரட்சிகரமாகத் தோன்றிய ஒன்று: எல்லா இயற்கணித எண்களின் கணமும் எல்லா விகிதமுறு எண்களின் கணமும் ஒரே முடிவிலா எண்ணளவையைக்கொண்டவை என்பது. கிரானெக்கர் இதற்கு அடியோடு மறுப்பு தெரிவித்தார். பெர்லினில் கேன்ட்டர் எதிர்பார்த்த பேராசிரியர் பதவி அவருக்குக் கிடைக்கவில்லை. ஃகால் பல்கலைக்கழகத்திற்கு மாறினார். 1872 இல் அங்கு துணைப்பேராசிரியரகவும், 1879 இல் முழுப்பேராசிரியராகவும் ஆனார்.

இருப்புத் தேற்றங்களும் படைப்புத் தேற்றங்களும்

கேண்ட்டருடைய தேற்றங்களில் பல இருப்புத் தேற்றங்களே (Existence Theorems). கிரானெக்கரும் இன்னும் சிலரும் இருப்புத் தேற்றங்கள் எவற்றை 'இருப்பதாகச்' சொல்கின்றனவோ அவற்றைப் படைக்க (construct) அவை வழிகோலவில்லை யென்பதால் இருப்புத் தேற்றங்களை மாத்திரம் வைத்து செயல்படக்கூடாது என்று வாதித்தனர். இந்த வாதத்தை கேண்ட்டரால் ஏற்றுக்கொள்ள முடியவில்லை. 1884 இலிருந்து, அதாவது அவருடைய 40ஆம் வயதிலிருந்து அடிக்கடி அவருக்கு மனச்சோர்வு (depression) ஏற்பட்டு அது ஒரு பிணியாகவே அவரைத் துன்புறுத்தி கடைசியில் அவரை மனநல மருத்துவ மனையில் கொண்டு சேர்த்துவிட்டது.

இருப்பு, படைப்பு, ஆகிய இருமுனைக்கருத்துகளும் இருபதாம் நூற்றாண்டில் கணிதவியலாளர்களையே இரு சாராராக வகுக்கும் நிலையை உண்டாக்கியது.

Remove ads

செருமானிய கணித ஐக்கியம்

கணக்கோட்பாடு துவக்கிய வாக்குவாதங்களும், குறிப்பாக கிரானெக்கருடைய மறுப்புகளும் கேன்ட்டரை செருமானிய கணித ஐக்கியத்தை (Deutsche Mathematiker Vereinigung) நிறுவுவதில் கவனம் செலுத்தத் தூண்டியது. 1890 இல் கேன்ட்டர் தான் அதன் தலைவராக இரூந்தார். அவைக்கியத்தின் குறிக்கோள் அது ஒரு பன்னாட்டு விவாத மேடையாக இருக்கவேண்டும் என்பதே. கேன்ட்டரின் பெருந்தன்மை அவர் அதன் முதல் சொற்பொழிவையே கிரானெக்கரைக் கொண்டு நடத்த முயன்றதுதான். ஆனால் கிரானெக்கர் உடல்நலம் சரியில்லாததாகச் சொல்லி அழைப்பை மறுத்து விட்டார். முடிவுறா கணங்களின் எண்ணளவைகள் பற்றி 1904 இல் அவ்வைக்கிய மேடையில் விரிவாகப் பேசப்பட்டது.

Remove ads

பெருமைகள்

மிக அபூர்வமாகக் கொடுக்கப்படும் பிரித்தானிய ராயல் சொசைட்டி இன் சில்வெசிட்டர் மெடல் கேன்ட்டருக்குக் கொடுக்கப்பட்டது குறிப்பிடத்தக்கது. இந்த வெண்கலப் பதக்கத்தை ராயல் சொசைட்டியினர் மூன்றாண்டுகளுக்கு ஒருமுறை வழங்குகின்றனர்.

இவற்றையும் பார்க்கவும்

மேற்கோள்கள்

உசாத்துணைகள்

வெளி இணைப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads