நிகழ்தகவு
From Wikipedia, the free encyclopedia
Remove ads
நிகழ்தகவு (Probability) என்பது ஒரு நிகழ்ச்சி நிகழவல்ல வாய்ப்பின் அளவாகும்.[1] நிகழ்தகவு சுழிக்கும் ஒன்றுக்கும் இடையில் உள்ள எண்ணாக அமைகிறது; இங்கு, மேலோட்டமாக கருதினால்,[2] 0 என்பது நிகழும் வாய்ப்பின்மையைச் சுட்டும்; 1 என்பது நிகழவல்ல உறுதிப்பாட்டைக் குறிக்கும்.[3][4] ஒரு நிகழ்ச்சியின் நிகழ்தகவு உயர்வாக அமையும்போது, அந்நிகழ்வு கூடுதலான வாய்ப்புடன் நிகழும். எளிய எடுத்துகாட்டாக ஒரு நாணயத்தைச் சுண்டிவிடுதலாகும். நாணயம் சமச்சீரினதாகையால் தலை விழுதலும் பூ விழுதலும் சம நிகழ்தவுடையவை ஆகும்; அதாவது தலை விழுதலின் நிகழ்தகவு பூ விழுதலின் நிகழ்தகவுக்குச் சமமாகும்; மேலும் வேறு நிகழ்வுகளுக்கு வாய்ப்பு இல்லாத்தால், தலையோ பூவோ விழும் வாய்ப்பு 1/2 ஆகும். இதை 0.5 எனவோ 50% எனவோ கூட எழுதலாம்.
இந்தக் கருத்துப்படிமங்கள் நிகழ்தகவுக் கோட்பாட்டில் கணிதமுறை அடிக்கோளியலாக குறிவழி விளக்கப்படுகிறது; இக்கோட்பாடு கணிதம், புள்ளியியல், சீட்டாட்டம், அறிவியல் (குறிப்பாக, இயற்பியல்), செயற்கை நுண்மதி/எந்திரப் பயில்வு, கணினி அறிவியல், ஆட்டக் கோட்பாடு, மெய்யியல் ஆகிய துறைகளில் பயன்படுகிறது. எடுத்துகாட்டாக, இவற்றில் அமையும் நிகழ்ச்சிகளின் எதிபார்க்கும் நிகழ்திறத்தின் அல்லது நிகழ்மையின் உய்த்தறிதலைக் கணிக்கப் பயன்படுகிறது. இக்கோட்பாடு சிக்கலான அமைப்புகளின் இயக்கத்தையும் ஒழுங்குபாடுகளையும் விவரிக்கவும் பயன்படுகிறது.[5]
நிச்சயமற்ற தன்மையை அளவிடுவதற்கு, டெம்ப்ஸ்டர்-ஷாஃபர் கோட்பாடு, நிகழ்தகவுக் கோட்பாடு போன்ற கோட்பாடுகளும் உள்ளன. ஆனால் இவை நிகழ்தகவின் விதிகளிலிருந்து மாறுபட்டிருப்பதுடன், அதனுடன் ஒத்திசைவதும் இல்லை.
Remove ads
விளக்கங்கள்
நாணயத்தைச் சுண்டிவிடுதல் போன்ற தூய கோட்பாட்டுச் சூழலில் நன்கு வரையறுத்த தற்போக்கியலான செய்முறைகளை ஆயும்போது, நிகழ்தகவுகளை தேவைப்படும் அல்லது விரும்பும் விளைவுகளின் எண்ணிக்கையை மொத்த விளைவுகளின் எண்ணிக்கையால் வகுத்துவரும் எண்களால் குறிப்பிடலாம். எடுத்துகாட்டாக, ஒரு நாணயத்தை இருமுறை சுண்டிவிடும்போது "தலை-தலை", "தலை-பூ", "பூ-தலை", "பூ-பூ" விளைவுகள் ஏற்படலாம்,. "தலை-தலை" விளைவைப் பெறும் நிகழ்தகவு 4 விளைவுகளில் 1 ஆக அல்லது ¼ ஆக அல்லது 0.25ஆக (அல்லது 25% ஆக) அமையும். என்றாலும் நடைமுறைப் பயன்பாட்டுக்கு வரும்போது, நிகழ்தகவு விளக்கங்களில் இரண்டு சம முதன்மையான கருத்தினங்கள் அமையும். இந்தக் கீழுள்ள இருவகைக் கருத்தினங்களைச் சார்ந்தவர்கள் நிகழ்தகவின் அடிப்படைத் தன்மையைப் பற்றி வேறுபட்ட இருவேறு கண்ணோட்டங்களைப் பெற்றிருப்பர்:
- புறநிலைவாதிகள் (Objectivists) நிகழ்வுகளின் புறநிலை நிகழ்தகவை எண்களால் குறிப்பிடுவர். புறநிலை நிகழ்தகவின் அனைவரும் அறிந்த வடிவம் நிகழ்வெண் சார்ந்த நிகழ்தகவாகும்; இவர்கள் தற்போக்கியல்புள்ள நிகழ்ச்சியின் நிகழ்தகவை ஒரு செய்முறையைத் திரும்பத் திரும்ப பல தடவை செய்யும்போது, அந்நிகழ்ச்சியானது ஏற்படும் சார்பு நிகழ்வெண்ணாக அல்லது நிகழ்வடுக்காக அமைவதாகக் கூறுவர். இந்த விளக்கம் நிகழ்தகவைச் செய்முறையின் "தொடர்விளைவில் " கிடைக்கும் சார்பு நிகழ்வடுக்காக கருதுகிறது.[6] இதன் மற்றொரு மாறுபட்டவகை இயற்போக்கு நிகழ்தகவு (propensity probability) எனப்படுகிறது; இந்த விளக்கம் நிகழ்தகவை, குறிப்பிட்ட செய்முறை தரும் குறிப்பிட்ட விளைவின் தன்மையாக, அது ஒரேயொருமுறை மட்டுமே செய்யப்பட்டாலும்கூட, விளக்குகிறது.
- அகவயவாதிகள் (Subjectivists) அல்லது பாயெசியவாதிகள் நம்பிக்கைசார்ந்த அகவய நிகழ்தகவை எண்களால் குறிப்பிடுவர்.[7][8] அகவய நிகழ்தகவின் அனைவ்ரும் அறிந்த வடிவம் பாயெசிய நிகழ்தகவாகும்; இது நிகழ்தகவைக் கணிக்க, செய்முறைத் தரவுகளோடு அத்துறை வல்லுனரின் அறிவையும் உள்ளடக்குகிறது. இங்கு வல்லுனர் அறிவு என்பது அகவயமான முன்தீர்மானித்த நிகழ்தகவின் பரவலை உள்கொண்டுவருகிறது. இந்த இருவகைத் தரவுகளையும் ஒரு வாய்ப்புச் சார்பில் (likelihood function) பயன்படுத்தி நிகழ்தகவு கணிக்கப்படுகிறது. முந்தைய, வாய்ப்புறு தரவுகளின் விளைவுவழி இயல்புபடுத்திய முடிவுகளால் உருவாகும் பிந்தைய நிகழ்தகவுப் பரவலில் இதுநாள்வரை அறிந்த அனைத்துத் தகவல்களும் உள்ளடக்கப்பட்டிருக்கும்.[9] அவுமானின் இசைவுத் தேற்றத்தின்படி (Aumann's agreement theorem), இதையொத்த முன்தீர்மான நம்பிக்கையைக் கொண்ட பாயெசிய முகவர்கள் முடிவில் இதனோடு ஒத்தமையும் பிந்தைய நம்பிக்கைகளினை கண்டடைவர். இம்முகவர்கள் எவ்வளவுதான் தகவலைப் பெற்றிருந்தாலும்கூட, போதுமான அளவுக்கு வேறுபாட்ட முந்தமைகள், வேறுபட்ட பிந்தமை முடிவுகளுக்கே இட்டுசெல்லும்.[10]
Remove ads
சொற்பொருளியல்
நிகழ்தகவைக் குறிக்கும் probability எனும்சொல் இலத்தீன probabilitas எனும் சொல்லில் இருந்து பெறப்பட்டதாகும். இதற்கு "probity" என்ற பொருளும் உண்டு. ஐரோப்பாவில் இச்சொல்லுக்குச் சட்டத்துறை வழக்கில் "சாட்சியத்துக்கான சான்றாண்மை அளவு" என்று பொருள்படும்; இது சாட்சி சொல்லுபவரின் சமூகநிலையைக் (நேர்மைத்திறத்தைக்) குறிக்கும். என்றாலும் இப்பொருள் இன்றைய நிகழ்தகவு எனும் பொருளில் இருந்து பெரிதும் வேறுபடுகிறது. மாறாக, நிகழ்தகவு என்பது விரிநிலை ஏரண வழியிலும் புள்ளியியல்சார் உய்த்தறிதல் வாயிலாகவும் பெறும் புலன்சார் சான்றின் நேர்மை அளவைக் குறிக்கும்.[11]
Remove ads
வரலாறு
நிகழ்தகவுக் கோட்பாடு
பயன்பாடுகள்
கணித அணுகுமுறை
பல முடிவுகளைத் தரும் ஒருசெய்முறையைக் கருதுக. அனைத்து வாய்ப்புள்ள முடிவுகளின் தொகுப்பு செய்முறையின் பத்க்கூற்று வெளி எனப்படுகிறது. பதக்கூற்று வெளியின் அடுக்குக் கணம், வாய்ப்புள்ள முடிவுகளின் அனைத்து வேறுபாட்ட தொகுப்புகளையும் கருதிப் பார்த்து உருவாக்கப்படுகிறது. எடுத்துகாட்டாக, ஓர் ஆறுபக்கத் தாயத்தை உருட்டினால், ஆறு வாய்ப்புள்ள முடிவுகள் கிடைக்கும். வாய்ப்புள்ள முடிவுகலின் ஒரு தொகுப்பு தாயத்தில் உள்ள ஒற்றைப்படை எண்களைத் தருகிறது. எனவே, {1,3,5} எனும் உட்கணம் தாயம் உருட்டல்கள் சார்ந்த பதக்கூற்று வெளியின் அடுக்குக் கணத்தில் ஓர் உறுப்பாகும். இத்தொகுப்புகள் "நிகழ்ச்சிகள்" எனப்படுகின்றன. இந்த நேர்வில், {1,3,5} என்பது தாயம் ஒற்றைப்படை எண்ணில் விழும்நிகழ்ச்சி ஆகும். முடிவுகள் உண்மையில் தரப்பட்ட ஒரு நிகழ்ச்சியில் நேர்ந்தால், அப்போது அந்நிகழ்ச்சி நேர்ந்ததாகச் சொல்லப்படும்.
நிகழ்தகவு என்பது ஒவ்வொரு நிகழ்ச்சிக்கும் சுழியில் இருந்து ஒன்று வரையில் அமையும் மதிப்பினை ஒதுக்கித்தரும் வழிமுறையாகும்; இதற்கு அந்த நிகழ்ச்சி அனைத்து வாய்ப்புள்ள முடிவுகளையும் தன்னுள் கொண்டிருக்கவேண்டும். நமது எடுத்துகாட்டில், {1,2,3,4,5,6} எனும் நிகழ்ச்சிக்கு 1 எனும் மதிப்பு தரப்படும். நிகழ்தகவு எனும் தகுதியைப் பெற, தரப்படும் மதிப்புகள் ஒரு குறிப்பிட்ட தேவையை நிறைவு செய்யவேண்டும் நாம் தம்முள் விலகிய நிகழ்ச்சிகளின் (பொது முடிவுகள் தம்முள் அமையாத நிகழ்ச்சிகள். எ.கா: {1,6}, {3}, {2,4} ஆகிய நிகழ்ச்சிகள் அனைத்துமே தம்முள் விலகியவை) தொகுப்பைக் கருதினால் , இந்த நிகழ்ச்சிகளில் ஏதாவதொன்று நேரக்கூடிய நிகழ்தகவு, அனைத்து தனித்தனி நிகழ்ச்சி சார்ந்த நிகழ்தகவுகளின் கூட்டுத்தொகைக்குச் சமமாக அமையும்.[12]
A எனும் நிகழ்ச்சியின் நிகழ்தகவு , , அல்லது என எழுதப்படும்.[13] நிகழ்தகவுக்கான இந்தக் கணித வரையறை ஈறிலிப் (முடிவிலிப்) பதக்கூற்று வெளிகளுக்கும் எண்ணமுடியாத பதக்கூற்று வெளிகளுக்கும், ஓர் அளவு அல்லது கணியம் சார்ந்த கருத்துப்படிமத்தைப் பயன்படுத்தி, விரிவுபடுத்தலாம்.
ஒரு செய்முறையின் ஒரு செயல்பாட்டில் A , B ஆகிய நிகழ்ச்சிகள் ஏற்பட்டால், இது A , B ஆகியவற்றின் இடைவெட்டு அல்லது கூட்டு நிகழ்தகவு எனப்படும்; இது எனக் குறிக்கப்படும்.
தற்சார்பு நிகழ்ச்சிகள்
இரு நிகழ்ச்சிகள் A , B ஆகியவை தற்சார்பினவாக அமைந்தால், அப்போது அவற்றின் கூட்டு நிகழ்தகவு பின்வருமாறு.
எடுத்துகாட்டாக, இரு நாணயங்கள் சுண்டிவிடப்பட்டால், இரண்டுமே தலையாக விழும் வாய்ப்பு, ஆகும்.[14]
தம்முள் விலகிய நிகழ்ச்சிகள்
ஒரு செய்முறையின் ஒற்றை செயல்பாட்டில் நிகழ்ச்சி A அல்லது நிகழ்ச்சி B ஏற்பட்டால், அது நிகழ்ச்சிகள் A, B ஆகிய இரண்டன் ஒன்றல் அல்லது ஒருங்கல் எனப்படுகிறது; இது எனக் குறிப்பிடப்படுகிறது.
இரு நிகழ்ச்சிகள் ஒன்றையொன்று தம்முள் விலகி அமைந்தால். அப்போது அவற்றில் ஏதாவது ஒன்று நிகழும் நிகழ்தகவு பின்வருமாறு அமையும்.
எடுத்துகாட்டாக, ஆறுபக்க தாயத்தில் 1 அல்லது 2 உருளும் வாய்ப்பு,
தம்முள் விலக்கிகொள்ளாத நிகழ்ச்சிகள்
நிகழ்ச்சிகள் தம்முள் ஒன்றையொன்று விலக்கிகொள்ளாதனவாக அமைந்தால், அப்போது
- ஆகும்.
கட்டுத்தளையுள்ள நிகழ்தகவு
கட்டுத்தளையுள்ள நிகழ்தகவு (Conditional probability) என்பது B எனும் நிகழ்ச்சியின் நிகழ்ந்த எண்ணிக்கை/நிகழ்வு தரப்பட்டநிலையில், வேறொரு நிகழ்ச்சி Aவின் நிகழ்தகவாகும். கட்டுத்தளையுள்ள நிகழ்தகவு என எழுதப்பட்டு, " B தரப்பட்டநிலையில் A வின் நிகழ்தவு" எனப் படிக்கப்படுகிறது. இது பின்வருமாறு வரையறுக்கப்படுகிறது[15]
எனில், அப்போது மேலுள்ள கோவையால் வரையறுக்க இயலாததாகிறது. என்றாலும், சில சுழி நிகழ்தகவு நிகழ்ச்சிகளுக்கு (தொடர்ச்சியான தற்போக்கு மாறிகளில் இருந்து உருவாகும் நிகழ்ச்சிகளுக்கு), அத்தகைய நிகழ்ச்சிகளின் σ-இயற்கணித முறையைப் பயன்படுத்திக் கட்டுத்தளையுள்ள நிகழ்தகவை வரையறுக்க முடியும்.[சான்று தேவை]
எடுத்துகாட்டாக, ஒரு பையில் 2 சிவப்பு பந்துகளும் 2 நீலப் பந்துகளும் (மொத்தம் 4 பந்துகளும்) இருந்தால், சிவப்புப் பந்தை எடுக்கும் நிகழ்தகவு ஆகும்; என்றாலும், இரண்டாவது பந்தை எடுக்கும்போது, அது சிவப்புப் பந்தாகவோ நீலப் பந்தாகவோ அமையும் நிகழ்தகவு முன்பு எடுத்த பந்தைச் சார்ந்து அமையும்; ஏற்கெனவே சிவப்புப் பந்து எடுக்கப்பட்டிருந்தால், மறுபடியும் சிவப்புப் பந்தை எடுக்கும் நிகழ்தகவு ஆகும்; ஏனெனில், ஒரு சிவப்புப் பந்தும் இரண்டு நீலப் பந்தும் மட்டுமே எஞ்சியுள்ளதால் என்க.
நிகழ்தகவின் தலைக்கீழ்
நிகழ்தகவுக் கோட்பாட்டிலும் அதன் பயன்பாடுகளிலும், பாயெசு விதி எனும் நிகழ்ச்சியோடு, எனும் நிகழ்ச்சியின் ஒற்றைப்படைகளை, எனும் மற்றொரு நிகழ்ச்சியின் முன்பும் பின்பும் அமையும் கட்டுத்தளையுள்ள நிகழ்தகவோடு உறவுபடுத்துகிறது. எனும் நிகழ்ச்சிக்கான எனும் நிகழ்ச்சியின் ஒற்றைப் படைகள் என்பது இந்த இரண்டு நிகழ்ச்சிகளின் நிகழ்தகவுகளின் விகிதமே ஆகும். என்பது இரண்டுக்கும் மேற்பட்ட பல தற்போக்கான நிகழ்ச்சிகளாக அமைந்தால், அப்போது இவ்விதியை பின்பானதன் வாய்ப்பு, முன்பானதன் வாய்ப்புகளின் மடங்கு விகிதத்தில் அமைவதாக, அதாவது ஆக அமைவதாக மாற்றி உரைக்கலாம்; இங்கு, விகிதக் குறியீடு இடது பக்கம் வலதுபக்கத்துக்கு விகிதச் சார்பில் உள்ளதையும் (அதாவது, ஒரு மாறிலி மடங்குக்குச் சமமாக உள்ளதையும்) நிலையான அல்லது தரப்பட்ட க்கு, மாறுவதையும் குறிக்கிறது. (Lee, 2012; Bertsch McGrayne, 2012). இந்த வடிவில், இது இலாட்லாசு வடிவத்துக்கும் (1774) கவுர்னாட்டு வடிவத்துக்கும் (1843) பின்னோக்கி நம்மை இட்டுசெல்கிறது; காண்க, ஃபியென்பர்கு (2005).
நிகழ்தகவுகளின் தொகுப்பு
Remove ads
குறிப்புகள்
நூல்தொகை
வெளி இணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads