நேரியல் சமன்பாடு

From Wikipedia, the free encyclopedia

நேரியல் சமன்பாடு
Remove ads

கணிதத்தில் ஒரு நேரியல் சமன்பாடு அல்லது ஒருபடிச் சமன்பாடு (linear equation) என்பது ஒரு இயற்கணிதச் சமன்பாடாகும். இச்சமன்பாட்டின் உறுப்புகள் மாறிலியாகவோ அல்லது மாறிலியால் பெருக்கப்பட்ட ஒரேயொரு மாறியைக் கொண்டைமைந்த உறுப்புகளாகவோ அமையும். ஒரு உறுப்பிலுள்ள மாறியின் அடுக்கு ஒன்றுக்கு மேல் இருக்கக் கூடாது. நேரியல் சமன்பாடுகள் ஒன்றுக்கு மேற்பட்ட மாறிகளைக் கொண்டிருக்கலாம்.

Thumb
நேரியல் சமன்பாடுகளின் வரைபடம்.

எளிய எடுத்துக்காட்டுகள்

ஒன்று, இரண்டு மற்றும் மூன்று மாறிகளில் அமைந்த நேரியல் சமன்பாடுகளுக்கான சில எளிய எடுத்துக்காட்டுகள் கீழே தரப்பட்டுள்ளன:

.....
Remove ads

இரு மாறிகளில் அமைந்த நேரியல் சமன்பாடுகள்

x மற்றும் y எனும் இரு மாறிகளில் அமைந்த ஒரு நேரியல் சமன்பாட்டு பொதுவாக கீழ்க்காணும் வடிவில் எழுதப்படுகிறது:

இங்கு m மற்றும் b மாறிலிகள்.

தளத்தில் அமைந்த ஒரு நேர்கோட்டின்மீது இச்சமன்பாட்டின் தீர்வுகள் அமையும்.
  • மாறிலி m -கோட்டின் சாய்வு;
  • "b" -அக்கோட்டின் y-வெட்டுத்துண்டு. அதாவது அக்கோடு y அச்சை வெட்டும் புள்ளிக்கும் ஆதிக்கும் இடைப்பட்ட y-அச்சுப்பகுதி.

இருபரிமாண நேரியல் சமன்பாட்டு வடிவங்கள்

இரு மாறியில் அமைந்த நேரியல் சமன்பாடுகளை அடிப்படை இயற்கணித விதிமுறைகளைப் பயன்படுத்தி வெவ்வேறு வடிவங்களில் மாற்றி அமைக்கலாம். அவ்வாறு மாற்றி அமைக்கப்பட்ட சமன்பாடுகள் நேர்கோடுகளைக் குறிக்கும் சமன்பாடுகளாக அமையும். அச்சமன்பாடுகளில் பயன்படுத்தப்படும் எழுத்துக்கள், x, y, t, மற்றும் θ மாறிகளையும் பிற எழுத்துக்கள் மாறிலிகளையும் குறிக்கும்.

பொதுவடிவம்

இங்கு A மற்றும் B இரண்டும் ஒரே சமயத்தில் பூச்சியமாக இருக்காது. எப்பொழுதும் A ≥ 0 என உள்ளவாறு சமன்பாட்டினை எழுதுவது வழமை.

கார்ட்டீசியன் ஆள்கூற்று முறைமையில் இந்நேரியல் சமன்பாட்டின் வரைபடம் ஒரு நேர்கோடாக இருக்கும்.

எனில்:
இக்கோட்டின் x -வெட்டுத்துண்டு:
எனில்:
இக்கோட்டின் y -வெட்டுத்துண்டு:
மற்றும்
சாய்வு:

திட்ட வடிவம்

இங்கு A மற்றும் B இரண்டும் ஒரே சமயத்தில் பூச்சியமாக இருக்காது; A, B, C ஒன்றுக்கொன்று பகா எண்கள்; மற்றும் A எதிரெண் அல்ல.

சாய்வு–வெட்டுத்துண்டு வடிவம்

இங்கு m நேர்கோட்டின் சாய்வு மற்றும் b கோட்டின் y-வெட்டுத்துண்டு, அதாவது இக்கோடு y-அச்சை வெட்டும் புள்ளியின் y -அச்சுதூரம்.
வரையறுக்கப்படாத சாய்வு கொண்ட நிலைக்குத்துக் கோடுகளை இவ்வடிவில் குறிக்க இயலாது.

புள்ளி–சாய்வு வடிவம்

இங்கு m கோட்டின் சாய்வு; (x1,y1) கோட்டின் மீதமைந்த ஒரு புள்ளி.
புள்ளி–சாய்வு வடிவிலிருந்து, ஒரு கோட்டின் மீதமைந்த இரு புள்ளிகளின் y -அச்சுதூரங்களின் வித்தியாசம் () அப்புள்ளிகளின் x -அச்சுதூரங்களின் வித்தியாசத்துடன் விகிதசமமாக இருக்கும் எனவும் அந்த விகிதசம மாறிலி கோட்டின் சாய்வு m (the slope of the line) எனவும் அறியலாம்.

இரு புள்ளி வடிவம்

இங்கு மற்றும் இரண்டும் கோட்டின் மீதமைந்த இரு வெவ்வேறான புள்ளிகள் (). :இவ்வடிவம் புள்ளி-சாய்வு வடிவத்துக்குச் சமானமாக அமைகிறது. அப்பொழுது கோட்டின் சாய்வின் மதிப்பு: .

வெட்டுத் துண்டு வடிவம்

இங்கு a மற்றும் b பூச்சியமாக இருக்கக் கூடாது.
இச்சமன்பாட்டின் வரைபடம் தரும் கோட்டின்:
x -வெட்டுத்துண்டு a
y -வெட்டுத்துண்டு b.
A = 1/a, B = 1/b மற்றும் C = 1 எனப் பிரதியிட்டு வெட்டுத்துண்டு வடிவினை திட்ட வடிவிற்கு மாற்றலாம்.

துணையலகு வடிவம்

இவை துணையலகு t -ல் அமைந்த இரு ஒருங்கமைந்த சமன்பாடுகள். இச்சமன்பாடுகள் குறிக்கும் கோட்டிற்கு:
  • சாய்வு m = V / T,
  • x -வெட்டுத்துண்டு = (VUWT) / V
  • y -வெட்டுத்துண்டு = (WTVU) / T.

போலார் வடிவம்

இங்கு கோட்டின் சாய்வு m; y-வெட்டுத்துண்டு b.

θ = 0 எனும்போது சமன்பாட்டின் வரைபடம் வரையறுக்கப்படவில்லை. தொடர்ச்சியின்மையைச் சரிசெய்வதற்காக சமன்பாட்டினைப் பின்வருமாறு மாற்றி எழுதலாம்:

செங்குத்து வடிவம்

தரப்பட்ட கோட்டிற்கும் ஆதிப்புள்ளிக்கும் இடைப்பட்ட மிகச்சிறிய நீளமுள்ள கோட்டுத்துண்டு செங்குத்து.

ஒரு கோட்டினைக் குறிக்கும் சமன்பாடு செங்குத்து வடிவில்:

செங்குத்தின் சாய்வுகோணம் θ; செங்குத்தின் நீளம் p.
Remove ads

இரண்டிற்கு மேற்பட்ட மாறிகளில் அமைந்த நேரியல் சமன்பாடுகள்

ஒரு நேரியல் சமன்பாடு இரண்டிற்கும் மேற்பட்ட மாறிகளைக் கொண்டிருக்கலாம்.

n மாறிகளில் அமைந்த நேரியல் சமன்பாடு:

இந்த வடிவில். a1, a2, …, an -மாறிலிகள்; x1, x2, …, xn -மாறிலிகள்.

இத்தகைய சமன்பாடு, n-பரிமாண யூக்ளிடியன் வெளியில் அமைந்த (n–1)-பரிமாண மீத்தளத்தைக் குறிக்கும்.

வெளி இணைப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads