மடங்கெண்
From Wikipedia, the free encyclopedia
Remove ads
கணிதத்தில் மடங்கு கணத்தின் ஒரு உறுப்பின் மடங்கெண் (multiplicity) என்பது ஒரு உறுப்பானது எத்தனை முறை அக் கணத்தில் தோன்றுகிறது என்பதைக் குறிக்கும் எண் ஆகும். (சாதாரண கணத்தைப் போலல்லாது, மடங்கு கணத்தின் வரையறைப்படி, அதன் உறுப்புகள் மீளும் உறுப்புகளாக இருக்கும்.)
எடுத்துக்காட்டு: {a, a, b, b, b, c} என்ற மடங்கு கணத்தில் a, b, c இன் மடங்கெண்கள் முறையே 2, 3, 1 ஆகும்.
பகாக் காரணியாக்கத்தில்
- 60 = 2 × 2 × 3 × 5
60 இன் பகாக் காரணிகளின் கணம் {2, 2, 3, 5} ஒரு மடங்கு கணமாக அமைகிறது. இதில் பகாக்காரணி 2 இன் மடங்கெண் 2; 3 இன் மடங்கெண் 1; 5 இன் மடங்கெண் 1. எண் 60இன் பகாக்காரணிகள் நான்கு, ஆனால் அவற்றில் வெவ்வேறானவை மூன்று மட்டுமே.
பல்லுறுப்புக்கோவையின் மூலங்களில்
F என்ற களத்தில் கெழுக்களைக் கொண்ட ஒருமாறியிலமைந்த பல்லுறுப்புக்க்கோவை p(x) மற்றும் a ∈ F ஆனது p(x) இன் k மடங்கெண் கொண்ட மூலம் எனில்:
- s(a) ≠ 0 மற்றும் p(x) = (x − a)ks(x) என்றவாறு ஒரு பல்லுறுப்புக்கோவை s(x) ஐக் காணமுடியும்.
- k = 1, எனில் a ’எளிய மூலம்’ என்றழைக்கப்படும்.
எடுத்துக்காட்டு:
- p(x) =x3 + 2x2 − 7x + 4
இதன் மூலங்கள் 1, −4 ஐக் கொண்டு பல்லுறுப்புக்கோவையைப் பின்வருமாறு எழுதலாம்:
- p(x) = (x + 4)(x − 1)2.
பல்லுறுப்புக்கோவையின் இவ்வடிவமைப்பிலிருந்து மூலம் 1 இன் மடங்கெண் 2 என்றும், மூலம் −4 இன் மடங்கெண் 1 (எளிய மூலம்) என்றும் அறியலாம். ஒரு பல்லுறுப்புக்கோவைக்கு மடங்கு மூலங்கள் இருந்தால் மட்டுமே அதன் தன்மைகாட்டியின் மதிப்பு பூச்சியமாகும்.
வரைபடத்தில்

கார்ட்டீசியன் தளத்தில் வரையப்பட்ட f(x) என்ற பல்லுறுப்புக்கோவையின் வரைபடத்தில், ஒற்றை மடங்கெண் கொண்ட மூலங்களில் வளைவரை x-அச்சை வெட்டும், ஆனால் இரட்டை மடங்கெண் மூலங்களில் x-அச்சைத் தொட்டுமட்டும் செல்லும். ஒன்றுக்கும் அதிகமான மடங்கெண் கொண்ட மூலங்களில் வளைவரையின் சாய்வு பூச்சியமாக இருக்கும்.
Remove ads
மேற்கோள்கள்
- Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, 1999. பன்னாட்டுத் தரப்புத்தக எண் 0-8176-4011-8.
வெளி இணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads