คำถามยอดนิยม
ไทมไลน์
แชท
มุมมอง

การแจกแจงปรกติ

จากวิกิพีเดีย สารานุกรมเสรี

การแจกแจงปรกติ
Remove ads

สำหรับทฤษฎีความน่าจะเป็น การแจกแจงปกติ (อังกฤษ: normal distribution) เป็นการแจกแจงความน่าจะเป็นของค่าของตัวแปรสุ่มที่เป็นค่าแบบต่อเนื่อง โดยที่ค่าของตัวแปรสุ่มมีแนวโน้มที่จะมีค่าอยู่ใกล้ ๆ กับค่า ๆ หนึ่ง (เรียกว่าค่ามัชฌิม) กราฟแสดงค่าฟังก์ชันความหนาแน่น (probability density function) จะเป็นรูปคล้ายระฆังคว่ำ หรือเรียกว่า Gaussian function โดยค่าฟังก์ชันความหนาแน่นของการแจกแจงปรกติ ได้แก่

ข้อมูลเบื้องต้น สัญกรณ์:, ตัวแปรเสริม: ...

โดย "x" แทนตัวแปรสุ่ม พารามิเตอร์ μ แสดงค่ามัชฌิม และ σ2 คือค่าความแปรปรวน (variance) ซึ่งเป็นค่าที่ใช้บอกปริมาณการกระจายของการแจกแจง การแจกแจงปรกติที่มีค่า μ = 0 และ σ2 = 1 จะถูกเรียกว่า การแจกแจงปรกติมาตรฐาน

การแจกแจงปรกติเป็นการแจกแจงที่เด่นที่สุดในทางวิชาความน่าจะเป็นและสถิติศาสตร์ ซึ่งก็มาจากหลาย ๆ เหตุผล[1] ซึ่งก็รวมถึงผลจากทฤษฎีบทขีดจำกัดกลาง (central limit theorem) ที่กล่าวว่า ภายใต้สภาพทั่ว ๆ ไปแล้ว ค่าเฉลี่ยจากการสุ่มค่าของตัวแปรสุ่มอิสระจากการแจกแจงใด ๆ (ที่มีค่าเฉลี่ยและค่าความแปรปรวนจำกัด) ถ้าจำนวนการสุ่มนั้นใหญ่พอ แล้วค่าเฉลี่ยนั้นจะมีการแจกแจงประมาณได้เป็นการแจกแจงปรกติ

Remove ads

ลักษณะที่สำคัญของการแจกแจงปรกติ

  1. ทุกค่าของ
  2. ลดลงเรื่อย ๆ ถ้าค่า ห่างจาก เพิ่มขึ้นเรื่อย ๆ
  3. สมมาตรที่ คือ ทุกค่า
  4. เมื่อ แล้ว จะมีค่าสูงสุด และ มีค่าเท่ากับมัธยฐาน กับ ฐานนิยม
  5. ถ้า ลดลง ส่วนโค้งจะแคบลงด้วย
  6. พื้นที่ใต้ส่วนโค้งระหว่าง
  • กับ
  • กับ
  • กับ
Remove ads

อ้างอิง

ดูเพิ่ม

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads