คำถามยอดนิยม
ไทมไลน์
แชท
มุมมอง
สามสิ่งอันดับพีทาโกรัส
จากวิกิพีเดีย สารานุกรมเสรี
Remove ads
สามสิ่งอันดับพีทาโกรัส (อังกฤษ: Pythagorean triple) ประกอบด้วยจำนวนเต็มบวกสามจำนวน คือ a, b และ c โดยที่ a2 + b2 = c2 สามสิ่งอันดับดังกล่าวนี้มักถูกเขียนเป็น (a, b, c) ซึ่งตัวอย่างที่รู้จักกันดี คือ (3, 4, 5) ถ้า (a, b, c) เป็นสามสิ่งอันดับพีทาโกรัส แล้วจะได้ (ka, kb, kc) ซึ่งจะมี k เป็นจำนวนเต็มบวกใด ๆ โดยถ้ารูปสามเหลี่ยมมีความยาวด้านเท่ากับค่าของสามสิ่งอันดับพีทาโกรัสแล้วจะเป็นรูปสามเหลี่ยมมุมฉาก ซึ่งเรียกว่า รูปสามเหลี่ยมพีทาโกรัส

ปฐมฐานของสามสิ่งอันดับพีทาโกรัส (primitive Pythagorean triple) คือ รูปสามเหลี่ยมที่มีด้าน a, b และ c เป็นจำนวนเฉพาะสัมพัทธ์ (coprime) ซึ่งกล่าวคือ ไม่มีตัวประกอบร่วมนอกจาก 1 และ -1[1] เช่น (3, 4, 5) เป็นปฐมฐานของสามสิ่งอันดับพีทาโกรัส ซึ่งในขณะที่ (6, 8, 10) ไม่เป็นเนื่องจากมีตัวประกอบร่วมนอกจาก 1 คือ 2 และสามสิ่งอันดับพีทาโกรัสทุกอันสามารถย่อ/ขยาย ให้เป็นปฐมฐานของสามสิ่งอันดับพีทาโกรัสที่มีเอกลักษณ์ได้ โดยการหาร (a, b, c) ด้วยตัวหารร่วมมาก (greatest common divisor) ซึ่งในทางกลับกัน สามสิ่งอันดับพีทาโกรัสทุกอันสามารถหาได้โดยการคูณองค์ประกอบของปฐมฐานของสามสิ่งอันดับพีทาโกรัสด้วยจำนวนเต็มบวก
ชื่อของสามสิ่งอันดับของพีทาโกรัสนั้นมาจากทฤษฎีบทพีทาโกรัส (Pythagorean theorem) ซึ่งอธิบายว่ารูปสามเหลี่ยมมุมฉากทุกรูปนั้นมีความความสัมพันธ์ระหว่างด้านประกอบมุมฉากทั้งสองด้านและด้านตรงข้ามมุมฉาก ตามสูตร ดังนั้นสามสิ่งอันดับพีทาโกรัสสามอธิบายความยาวด้านทั้งสามที่เป็นจำนวนเต็มของรูปสามเหลี่ยมมุมฉาก แต่รูปสามเหลี่ยมมุมฉากที่มีด้านที่ไม่เป็นจำนวนเต็ม จะไม่อยู่ในรูปของสามสิ่งอันดับพีทาโกรัส ตัวอย่างเช่น รูปสามเหลี่ยมที่มีด้านยาว และ ซึ่งรูปสามเหลี่ยมนี้เป็นรูปสามเหลี่ยมมุมฉาก แต่ ไม่เป็นสามสิ่งอันดับพีทาโกรัสเนื่องจากรากที่สองของสองไม่เป็นจำนวนเต็มหรือจำนวนตรรกยะ อีกเหตุผลหนึ่งคือ และ ไม่มีตัวคูณร่วมที่เป็นจำนวนเต็มเพราะ เป็นจำนวนอตรรกยะ
สามสิ่งอันดับพีทาโกรัสนั้นเป็นที่รู้จักกันตั้งแต่ยุคโบราณ รายงานที่เก่าที่สุดที่มีการบันทึกมาจาก Plimpton 322 ซึ่งเป็นแผ่นจารึกดินเหนียวของชาวบาบิโลเนียที่มีอายุประมาณปี 1800 ก่อนคริสตกาลที่ถูกเขียนด้วยระบบเลขฐานหกสิบ (sexagesimal)[2]
เมื่อหาคำตอบในรูปของจำนวนเต็ม สมการ a2 + b2 = c2 คือ สมการไดโอเฟนไทน์ (Diophantine equation) ดังนั้นสามสิ่งอันดับพีทาโกรัสเป็นหนึ่งในการหาคำตอบที่เก่าแก่ที่สุดที่รู้จักกันในชื่อของ สมการไม่เชิงเส้นไดโอเฟนไทน์ (nonlinear Diophantine equation)
Remove ads
ตัวอย่าง
มีค่าของปฐมฐานของสามสิ่งอันดับพีทาโกรัสจากจำนวนนับถึงเลข 100 มีทั้งหมด 16 ค่า ได้แก่
(3, 4, 5) | (5, 12, 13) | (8, 15, 17) | (7, 24, 25) |
(20, 21, 29) | (12, 35, 37) | (9, 40, 41) | (28, 45, 53) |
(11, 60, 61) | (16, 63, 65) | (33, 56, 65) | (48, 55, 73) |
(13, 84, 85) | (36, 77, 85) | (39, 80, 89) | (65, 72, 97) |
ค่าของสามสิ่งอันดับพีทาโกรัสอื่น ๆ เช่น (6, 8, 10) ไม่อยู่ในรายชื่อ เนื่องจากไม่เป็นค่าปฐมฐาน เพราะ (6, 8, 10) เป็นพหุคูณของค่าของปฐมฐานของสามสิ่งอันดับพีทาโกรัส (3, 4, 5)
และค่าเหล่านี้คือค่าของปฐมฐานของสามสิ่งอันดับพีทาโกรัสจากจำนวนนับถึงเลข 300 ได้แก่
(20, 99, 101) | (60, 91, 109) | (15, 112, 113) | (44, 117, 125) |
(88, 105, 137) | (17, 144, 145) | (24, 143, 145) | (51, 140, 149) |
(85, 132, 157) | (119, 120, 169) | (52, 165, 173) | (19, 180, 181) |
(57, 176, 185) | (104, 153, 185) | (95, 168, 193) | (28, 195, 197) |
(84, 187, 205) | (133, 156, 205) | (21, 220, 221) | (140, 171, 221) |
(60, 221, 229) | (105, 208, 233) | (120, 209, 241) | (32, 255, 257) |
(23, 264, 265) | (96, 247, 265) | (69, 260, 269) | (115, 252, 277) |
(160, 231, 281) | (161, 240, 289) | (68, 285, 293) |
Remove ads
เชิงอรรถและรายการอ้างอิง
แหล่งข้อมูลอื่น
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads