คำถามยอดนิยม
ไทมไลน์
แชท
มุมมอง
การทำเหมืองข้อมูล
จากวิกิพีเดีย สารานุกรมเสรี
Remove ads
Remove ads
การทำเหมืองข้อมูล (อังกฤษ: data mining) เป็นกระบวนการในการค้นหารูปแบบในชุดข้อมูลขนาดใหญ่ โดยใช้วิธีการของการเรียนรู้ของเครื่อง สถิติ และระบบฐานข้อมูล[1][2] การทำเหมืองข้อมูลเป็นขั้นตอนวิธีการในการ"การค้นหาความรู้ในฐานข้อมูล" (knowledge discovery in databases - KDD) การทำเหมืองข้อมูลเป็นเทคนิคเพื่อค้นหารูปแบบ (pattern) ของจากข้อมูลจำนวนมหาศาลโดยอัตโนมัติ โดยใช้ขั้นตอนวิธีจากวิชาสถิติ การเรียนรู้ของเครื่อง และ การรู้จำแบบ หรือในอีกนิยามหนึ่งการทำเหมืองข้อมูล คือ กระบวนการที่กระทำกับข้อมูล (โดยส่วนใหญ่จะมีจำนวนมาก) เพื่อค้นหารูปแบบ แนวทาง และความสัมพันธ์ที่ซ่อนอยู่ในชุดข้อมูลนั้น โดยอาศัยหลักสถิติ การรู้จำ การเรียนรู้ของเครื่อง และหลักคณิตศาสตร์
การประยุกต์ใช้การทำเหมืองข้อมูลได้แก่ การขายปลีกและขายส่ง การธนาคาร การประดิษฐ์และการผลิต การประกันภัย การทำงานของตำรวจ การดูแลสุขภาพ การตลาด การใช้งานอินเทอร์เน็ต การศึกษา เป็นต้น
Remove ads
ความรู้ที่ได้
สรุป
มุมมอง
ความรู้ที่ได้จากการทำเหมืองข้อมูลมีหลายรูปแบบ ได้แก่
- กฎความสัมพันธ์ (Association rule)
- แสดงความสัมพันธ์ของเหตุการณ์หรือวัตถุ ที่เกิดขึ้นพร้อมกัน ตัวอย่างของการประยุกต์ใช้กฎเชื่อมโยง เช่น การวิเคราะห์ข้อมูลการขายสินค้า โดยเก็บข้อมูลจากระบบ ณ จุดขาย (POS) หรือร้านค้าออนไลน์ แล้วพิจารณาสินค้าที่ผู้ซื้อมักจะซื้อพร้อมกัน เช่น ถ้าพบว่าคนที่ซื้อเทปวิดีโอมักจะซื้อเทปกาวด้วย ร้านค้าก็อาจจะจัดร้านให้สินค้าสองอย่างอยู่ใกล้กัน เพื่อเพิ่มยอดขาย หรืออาจจะพบว่าหลังจากคนซื้อหนังสือ ก แล้ว มักจะซื้อหนังสือ ข ด้วย ก็สามารถนำความรู้นี้ไปแนะนำผู้ที่กำลังจะซื้อหนังสือ ก ได้
- การจำแนกประเภทข้อมูล (Data classification)
- หากฎเพื่อระบุประเภทของวัตถุจากคุณสมบัติของวัตถุ เช่น หาความสัมพันธ์ระหว่างผลการตรวจร่างกายต่าง ๆ กับการเกิดโรค โดยใช้ข้อมูลผู้ป่วยและการวินิจฉัยของแพทย์ที่เก็บไว้ เพื่อนำมาช่วยวินิจฉัยโรคของผู้ป่วย หรือการวิจัยทางการแพทย์ ในทางธุรกิจจะใช้เพื่อดูคุณสมบัติของผู้ที่จะก่อหนี้ดีหรือหนี้เสีย เพื่อประกอบการพิจารณาการอนุมัติเงินกู้
- การแบ่งกลุ่มข้อมูล (Data clustering)
- แบ่งข้อมูลที่มีลักษณะคล้ายกันออกเป็นกลุ่ม แบ่งกลุ่มผู้ป่วยที่เป็นโรคเดียวกันตามลักษณะอาการ เพื่อนำไปใช้ประโยชน์ในการวิเคราะห์หาสาเหตุของโรค โดยพิจารณาจากผู้ป่วยที่มีอาการคล้ายคลึงกัน
- การสร้างมโนภาพ (Visualization)
- สร้างภาพคอมพิวเตอร์กราฟิกที่สามารถนำเสนอข้อมูลมากมายอย่างครบถ้วนแทนการใช้ขัอความนำเสนอข้อมูลที่มากมาย เราอาจพบข้อมูลที่ซ้อนเร้นเมื่อดูข้อมูลชุดนั้นด้วยจินตทัศน์
Remove ads
ขั้นตอนการทำเหมืองข้อมูล
- ทำความเข้าใจปัญหา
- ทำความเข้าใจข้อมูล
- เตรียมข้อมูล
- สร้างแบบจำลอง
- ประเมิน
- นำไปใช้งาน
ประโยชน์จากการทำเหมืองข้อมูล
การทำเหมืองข้อมูล จำเป็นต้องอาศัยบุคลากรจากหลายฝ่าย และต้องอาศัยความรู้จำนวนมาก ถึงจะได้รับประโยชน์อย่างแท้จริง เพราะสิ่งที่ได้จากขั้นตอนวิธีเป็นเพียงตัวเลข และข้อมูล ที่อาจจะนำไปใช้ประโยชน์ได้หรือใช้ประโยชน์อะไรไม่ได้เลยก็เป็นได้ ผู้ที่ศึกษาการทำเหมืองข้อมูลจึงควรมีความรู้รอบด้านและต้องติดต่อกับทุก ๆ ฝ่าย เพื่อให้เข้าใจถึงขอบเขตของปัญหาโดยแท้จริงก่อน เพื่อให้การทำเหมืองข้อมูลเกิดประโยชน์อย่างแท้จริง
ดูเพิ่ม
- คลังข้อมูล (Data warehouse)
- การทำเหมืองข้อความ (Text mining)
- การทำเหมืองเว็บ (Web mining)
- ฐานข้อมูล (Database)
อ้างอิง
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads