En İyi Sorular
Zaman Çizelgesi
Sohbet
Bakış Açıları
Kinetik enerji
bir cismin harekiyle oluşan enerji Vikipedi'den, özgür ansiklopediden
Remove ads
Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.[1]

Kinetik enerji, hareketsiz kütleli bir cismi belli bir hıza çıkarmak için yapılan iş olarak tanımlanır. İvmelenmede elde edilen kinetik enerji, cisim hızı sabit kaldığı sürece sabittir. Cismi bu sabit hızından hareketsizlik durumuna döndürmek için aynı düzeyde iş yapılması gerekir.
Klasik mekanikte, hızlı ve kütleli dönmeyen bir cismin kinetik enerjisi şudur: . Lagrange mekaniğine göre ise bir sistemin Lagrange denklemindeki herhangi bir terim kinetik enerji olarak tanımlanabilir.[2][3] İzafiyet mekaniğinde ise bu eşitlik v ışık hızından çok daha az olduğu durumlarda yaklaşık olarak geçerlidir.
Kinetik enerjinin standart birimi jouledür.
Remove ads
Etimoloji ve tarihçe
Özetle
Bakış açısı
Kinetik sıfatının kökeni "hareket" anlamına gelen Grekçe κίνησις kinesis kelimesine dayanmaktadır. Kinetik enerji ve potansiyel enerji arasındaki dikotomi, Aristoteles'in bilfiil ve bilkuvve kavramlarına kadar uzandırılabilir.[4]
Klasik mekaniğin E ∝ mv2 ilişkisini, kinetik enerjiyi ilk olarak hareketli kuvvet (vis viva) olarak tanımlayan Gottfried Leibniz ve Johann Bernoulli geliştirmiştir. Willem 's Gravesande ise bu ilişkiyi teyit eden ilk deneysel çalışmayı yapmıştır: deneylerinde, farklı kil kalıplarını farklı yüksekliklerden salan Gravesande, kalıpların yüzeye girim derinliklerinin kalıp hızının karesi ile orantılı olduğunu gözlemlemiştir. Émilie du Châtelet ise bu deney sonuçlarını yorumlayan ve açıklayan bir çalışmayı yayımlamıştır.[5]
Kinetik enerji ve iş terimlerinin modern anlamları ile kullanılması 19. yüzyılın ortalarına uzanmaktadır. Bu terimlerin ilk kavramsallaştırılması, 1829'da Du Calcul de l'Effet des Machines başlıklı bir makale ile kinetik enerjiyi matematiksel bağlamda açıklayan Gaspard-Gustave Coriolis'e atfedilmektedir. Fakat, kinetik enerji terimini ilk ortaya koyan 1849–1851 arası kullanımları ile William Thomson (Lord Kelvin) olur.[6][7] 1853'te potansiyel enerji ve onu tamamlayan gerçek enerji terimlerini ortaya koyan Rankine,[8] William Thomson ve Peter Tait'in gerçek yerine kinetik kelimesini kullandığını aktarır.[9]
Remove ads
Newtonsal kinetik enerji
Özetle
Bakış açısı
Rijit-cisim kinetik enerjisi
Klasik mekanikte, sabit kütleli ve sabit süratli noktasal bir cismin (i.e. kütlesi olan bir nokta) ya da dönmeyen bir rijit cismin kinetik enerjisi, cismin kütlesine ve süratine bağlıdır. Kinetik enerji, kütle ve süratin karesinin çarpımının yarısına eşittir:
- : kütle (kilogram (kg))
- : sürat (i.e. hızın skaler büyüklüğü) (metre bölü saniye (m/s))
- : kinetik enerji (Joule)
Cisim, kütle merkezi sabit bir çizgi üzerinden ayrılmayan doğrusal hareket içinde ise, kinetik enerji türü öteleme kinetik enerjisi olarak ifade edilebilir.
Örneğin, saniyede 18 metre (yaklaşık 65 km/s) hızla doğrusal bir yolda hareket eden 80 kg'lık bir kütlenin kinetik enerjisi şu şekilde hesaplanabilir:
Aynı zamanda, hareket halindeki bir cismin kinetik enerjisi, cismi hareketsizlikten (=0[m/s]) anlık süratine (≠0[m/s]) getirmek için cisme uygulanan işe eşittir:
- : yerdeğişim doğrultusundaki net kuvvetin skaler büyüklüğü (Newton (N))
- : yerdeğişimin skaler büyüklüğü (metre (m))
Kinetik enerji cismin momentumu ile de formüle edilebilir:
- : momentumun skaler büyüklüğü (kg m/s)
- : kütle
Denklem türetimi
Bir cismin konumu, sabit bir F kuvveti ile kuvvete paralel x yerdeğişirse, yapılan W iş şu olur:
Newton'un İkinci Kanunu, bir cisme etkiyen sabit net kuvvetin, sabit kütleli bir cisme kütlesi ile ters orantılı sabit bir ivme kazandırdığını bildirir:
- : kütle
- : ivme
Kinematik denklemlere göre yerdeğişimi, hızın ve zamanın fonksiyonudur:
- : hız
- : sürat
- : zaman
İkinci denklemdeki F ve üçüncü denklemdeki x terimleri birinci denkleme konulursa, iş-kinetik enerji ilişkisi türetilmiş olunur:
Remove ads
Dönme kinetik enerjisi
Özetle
Bakış açısı
Kütle merkezinden geçen bir doğru etrafında dönen cisimlerin sahip olduğu kinetik enerjidir.
- ile ifade edilir.
- : Açısal hız (radyan/sn)
- , eylemsizlik momenti
Formülün türetilişi
açısal hızıyla dönen bir cismi parçalara ayırırsak, tüm parçaların toplam enerjisi bize cismin kinetik enerjisini verir. Yani
Düzgün dairesel hareket yapan cisimlerde aşağıdaki eşitlik vardır:
- yerine yazarsak
- paranteze alalım
İşte bu ifadenin parantez içindeki kısmına eylemsizlik momenti denir ve ile gösterilir. Cismin şekline bağlıdır.
Remove ads
Yüksek hızda kinetik enerji
Newton mekaniği'nin yasaları, sadece ışık hızına kıyasla küçük hızlarda hareket eden parçacıkların hareketlerini tanımlamada geçerlidir. Parçacık hızları c ile karşılaştırılabilir olduğunda, Newton mekaniğindeki denklemler, yerini görelilik teorisinin öngördüğü daha genel denklemlere bırakır. Görelilik teorisine göre, çok büyük hızıyla hareket eden kütleli bir parçacığın kinetik enerjisi:
- ile verilir.
Bu ifadeye göre -den daha büyük hızlar yoktur. Çünkü , -ye yaklaşırken sonsuza ilerler.
Remove ads
Kaynakça
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
