Топ питань
Часова шкала
Чат
Перспективи
Алгебраїчна незалежність
З Вікіпедії, вільної енциклопедії
Remove ads
Алгебраїчна незалежність — поняття теорії розширень полів. Нехай - деяке розширення поля . Елементи називаються алгебраїчно незалежними, якщо для довільного не тотожно рівного нулю многочлена з коефіцієнтами з поля
- .
![]() | Ця стаття потребує уваги й турботи фахівця у своїй галузі. (січень 2024) |
У іншому випадку елементи називаються алгебраїчно залежними. Нескінченна множина елементів називається алгебраїчно незалежною, якщо незалежною є кожна її скінченна підмножина, і залежною в іншому випадку. Визначення алгебраїчної незалежності можливо поширити на випадок, коли — кільце і — його підкільце.
Remove ads
Приклад
Підмножина поля дійсних чисел не є алгебраїчно незалежною над полем , оскільки многочлен є нетривіальним з раціональними коефіцієнтами і .
Remove ads
Література
- Ван дер Варден Б. Л. Алгебра. — Москва : Наука, 1975. — 623 с. — ISBN 5-8114-0552-9.(рос.)
- Ленг С. Алгебра. — Москва : Мир, 1968. — 564 с. — ISBN 5458320840.(рос.)
Посилання
- Chen, Johnny Algebraically Independent(англ.) на сайті Wolfram MathWorld.
![]() |
Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads