Топ питань
Часова шкала
Чат
Перспективи

Апроксимація Паде

З Вікіпедії, вільної енциклопедії

Remove ads

Апроксимація Паде — класичний метод раціональної апроксимації аналітичних функцій, названий на честь французького математика Анрі Паде. Метод полягає у зображенні функції у вигляді відношення двох поліномів, причому коефіцієнти цих поліномів визначені коефіцієнтами розкладу функції в ряд Тейлора: якщо є розкладання

то за допомогою апроксимації Паде можна оптимальним способом вибрати коефіцієнти і і отримати апроксимант

Використання цієї простої ідеї та її узагальнень призвело до багатьох результатів і перетворилося на фундаментальний метод дослідження.

Remove ads

Історія

Авторство Паде ґрунтується на його дисертації 1892 [1] (копія дисертації зберігається в бібліотеці Корнельського університету). У цій роботі він вивчав подібні апроксимації і розташував їх в таблицю, приділивши при цьому велику увагу експоненціальній функції.

Апроксимант Паде

Узагальнити
Перспектива

Нехай є розкладання функції у степеневий ряд Тейлора:

, де — коефіцієнти ряду.

Апроксимантом Паде є раціональною функцією вигляду

розкладання якої в ряд Маклорена (ряд Тейлора з центром в нулі) збігається з розкладанням функції допоки це можливо. Функція такого виду має коефіцієнтів в чисельнику і — в знаменнику. Весь набір коефіцієнтів визначено з точністю до спільного множника, для визначенності нехай . Тоді маємо незалежних невідомих коефіцієнтів. Логічно припустити, що коефіцієнти розкладання в ряд Маклорена апроксиманта Паде і даної функції збігаються для , тобто для формального ряду виконується

Remove ads

Узагальнення

  • Багатоточкові апроксимації Паде[2][3]
  • Апроксимації Бейкера-Гаммеля[3]
  • Апроксимація функції декількох змінних[3]
  • Матричні апроксимації Паде[4]
  • Апроксимація Паде-Чебишева[3]
  • Апроксимація Паде-Фур'є[3]

Див. також

Примітки

Джерела

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads