Топ питань
Часова шкала
Чат
Перспективи

Вісімка (теорія вузлів)

З Вікіпедії, вільної енциклопедії

Вісімка (теорія вузлів)
Remove ads

В теорії вузлів вісімка (чотириразовий вузол або вузол Лістинга) — це єдиний вузол з числом перетинів 4. Це найменше можливе число перетинів, за винятком тривіального вузла і трилисника. Вісімка є простим вузлом. Вперше розглянутий Лістингом у 1847 році.

Thumb
Вузол «Вісімка»

Походження назви

Назва походить від побутового вузла вісімка на мотузці, кінці якої з'єднані.

Опис

Узагальнити
Перспектива

Просте параметричне подання вузла «вісімка» задається множиною точок (x,y,z), для яких

де t — дійсна змінна.

Вісімка є простим, альтернованим, раціональним[en] вузлом з відповідним значенням 5/2. Він є також ахіральним вузлом. Вісімка є розшарованим[en] вузлом. Це випливає з іншого, складнішого (але цікавішого) подання вузла:

  1. Вузол є однорідною[1] замкнутою косою (а саме, замиканням коси з 3 нитками σ1σ2−1σ1σ2−1), а теорема Джона Сталлінґса[en] показує, що будь-яка однорідна коса є розшарованою.
  2. Вузол є зачепленням у точці (0,0,0,0) — ізольованій критичній точці дійсного поліноміального відображення F: R4R2 так, що (згідно з теоремою Джона Мілнора) відображення Мілнора[en] F є розшаруванням. Бернард Перон знайшов першу таку функцію F для цього вузла, а саме:

де

.
Remove ads

Математичні властивості

Узагальнити
Перспектива

Вузол «вісімка» грав історично важливу роль (і продовжує її грати) в теорії 3-многовидів[en] . Десь в середині 1970-х, Вільям Терстон показав, що вісімка є гіперболічним вузлом шляхом розкладання його доповнення на два ідеальних гіперболічних тетраедри (Роберт Райлі і Троельс Йорґенсен, працюючи незалежно один від одного, до цього показали, що вісімка є гіперболічної в іншому сенсі). Ця конструкція, нова на той час, привела його до багатьох сильних результатів і методів. Наприклад він зміг показати, що всі, окрім десяти, хірургій Дена[en] на вузлі «вісімка» дають нехакенові[ru], такі, що не допускають розшарування Зейферта нерозкладні[en] 3-многовиди. Це був перший з таких результатів. Багато інших було відкрито шляхом узагальнення побудови Терстона для інших вузлів і зачеплень.

Вісімка є також гіперболічним вузлом з найменшим можливим об'ємом 2,02 988…, згідно з роботою Чо Чунь (Chun Cao) і Роберта Маєрхофа (Robert Meyerhoff). З цієї точки зору вісімку можна розглядати як найпростіший гіперболічний вузол. Доповнення вісімки є подвійним накриттям многовиду Ґізекінґа[ru], який має найменший об'єм серед некомпактних гіперболічних 3-многовидів.

Вузол «вісімка» і мереживний вузол (−2,3,7)[en] є двомя гіперболічними вузлами, для яких відомо більше шести особливих хірургій, хірургій Дена, які приводять до негіперболічних 3-многовиів. Вони мають 10 і 7 відповідно. Теорема Лекенбі (Lackenby) і Маєргофа, доведення якої спирається на гіпотезу про геометризацію і використання комп'ютерних обчислень, стверджує, що 10 є найбільшим можливим числом особливих хірургій для будь-яких гіперболічних вузлів. Однак досі не встановлено, чи є вісімка єдиним вузлом, на якому досягається межа 10. Добре відома гіпотеза стверджує, що нижня межа (за винятком двох згаданих вузлів) дорівнює 6.

Thumb
Просте прямокутне зображення вузла «вісімка».
Thumb
Симетричне зображення, отримане з параметричних рівнянь.
Thumb
Математична поверхня, що ілюструє вузол вісімку

Інваріанти

Узагальнити
Перспектива

Многочлен Александера вісімки дорівнює

многочлен Конвея дорівнює

[2]

а многочлен Джонса дорівнює

Симетрія відносно і у многочлені Джонса свідчить про ахіральність вісімки.

Remove ads

Примітки

Література

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads