Топ питань
Часова шкала
Чат
Перспективи
Гіпотеза Кеплера
З Вікіпедії, вільної енциклопедії
Remove ads
Гіпо́теза Ке́плера — гіпотеза, що найщільніше пакування куль у тривимірному просторі забезпечує гексагональна щільна ґратка. Гіпотезу сформулював Йоганн Кеплер у трактаті «Про шестикутні сніжинки» (1611). Остаточно вона була доведена 2014 року.

Remove ads
Формулювання
Узагальнити
Перспектива
Серед усіх пакувань куль однакового розміру в тривимірному просторі найбільшу асимптотичну щільність має гранецентроване кубічне пакування (ГЦК) або пакування, рівні йому за щільністю, зокрема, гексагональне щільне пакування (ГЩ).
Зауваження
Складання гарматних ядер на кораблях у вигляді піраміди з трикутною розглядав Томас Герріот. Він обчислив частку об'єму, яку в такому пакуванні займають власне кулі[1]:
де — сумарний об'єм куль, — об'єм простору, займаний кулями.
Герріот звернувся до Кеплера з питанням, чи можливо укласти кулі щільніше, наприклад, якщо застосувати піраміду з чотирикутною основою[1].
1611 року Кеплер припустив, що пакування «пірамідою» (коли центри куль перебувають у вершинах гексагональної решітки) і є асимптотично найщільнішим[2]. Кеплер знав, що пакування з такою щільністю у тривимірному просторі не єдине[1].
Remove ads
Історія
Інтуїтивно задача виглядала простою, але довести, що пакування з такою щільністю є найкращим, не вдавалося протягом 400 років[2].
Повідомлення про комп'ютерне доведення гіпотези Кеплера з'явилося 1998 році в роботі математика Томаса Гейлса[en][3]. У 2003 році журі з 12 експертів, набране журналом Annals of Mathematics, прийшло до висновку, що доведення Гейлса, найпевніше, правильне[3]. 2005 року, на підтвердження цього, журнал опублікував скорочене доведення, а 2009 року інший журнал — повне доведення[4].
У 2014 році доведення гіпотези перевірено за допомогою комп'ютерної системи перевірки доведень[5][1]. Таким чином, зараз твердження гіпотези має статус доведеної математичної теореми[4].
Remove ads
Див. також
- Задача Кельвіна
- Пакування куль
- Політипія
- Задача про гарматні ядра
Джерела
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads