Топ питань
Часова шкала
Чат
Перспективи

Гіпотеза Кеплера

З Вікіпедії, вільної енциклопедії

Гіпотеза Кеплера
Remove ads

Гіпо́теза Ке́плера — гіпотеза, що найщільніше пакування куль у тривимірному просторі забезпечує гексагональна щільна ґратка. Гіпотезу сформулював Йоганн Кеплер у трактаті «Про шестикутні сніжинки» (1611). Остаточно вона була доведена 2014 року.

Коротка інформація Названо на честь, Ким доведено ...
Thumb
Гранецентроване кубічне пакування
Remove ads

Формулювання

Узагальнити
Перспектива

Серед усіх пакувань куль однакового розміру в тривимірному просторі найбільшу асимптотичну щільність має гранецентроване кубічне пакування (ГЦК) або пакування, рівні йому за щільністю, зокрема, гексагональне щільне пакування (ГЩ).

Зауваження

Складання гарматних ядер на кораблях у вигляді піраміди з трикутною розглядав Томас Герріот. Він обчислив частку об'єму, яку в такому пакуванні займають власне кулі[1]:

де  — сумарний об'єм куль,  — об'єм простору, займаний кулями.

Герріот звернувся до Кеплера з питанням, чи можливо укласти кулі щільніше, наприклад, якщо застосувати піраміду з чотирикутною основою[1].

1611 року Кеплер припустив, що пакування «пірамідою» (коли центри куль перебувають у вершинах гексагональної решітки) і є асимптотично найщільнішим[2]. Кеплер знав, що пакування з такою щільністю у тривимірному просторі не єдине[1].

Remove ads

Історія

Інтуїтивно задача виглядала простою, але довести, що пакування з такою щільністю є найкращим, не вдавалося протягом 400 років[2].

Повідомлення про комп'ютерне доведення гіпотези Кеплера з'явилося 1998 році в роботі математика Томаса Гейлса[en][3]. У 2003 році журі з 12 експертів, набране журналом Annals of Mathematics, прийшло до висновку, що доведення Гейлса, найпевніше, правильне[3]. 2005 року, на підтвердження цього, журнал опублікував скорочене доведення, а 2009 року інший журнал — повне доведення[4].

У 2014 році доведення гіпотези перевірено за допомогою комп'ютерної системи перевірки доведень[5][1]. Таким чином, зараз твердження гіпотези має статус доведеної математичної теореми[4].

Remove ads

Див. також

Джерела

Література

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads