Топ питань
Часова шкала
Чат
Перспективи
Коефіцієнт кластеризації
число, визначене з мережі вузол-зв’язок, котре визначає ймовірність того, що два сусіди випадково вибраного вузла будуть суміжними З Вікіпедії, вільної енциклопедії
Remove ads
В теорії графів коефіцієнт кластеризації є мірою ступеня, в якій вузли в графі мають тенденцію групуватися разом. Наявні дані свідчать про те, що в більшості реальних мереж, і, зокрема, в соціальних мережах, вузли, як правило, створюють тісно пов'язані групи, що характеризуються відносно високою щільністю зв'язків; ця ймовірність більше ніж середня ймовірність випадкового зв'язку між двома вузлами (Holland і Leinhardt, 1971;[1] Watts and Strogatz, 1998[2]).
![]() | Ця стаття є сирим перекладом з іншої мови. Можливо, вона створена за допомогою машинного перекладу або перекладачем, який недостатньо володіє обома мовами. (червень 2017) |
Існують два варіанти цього терміна: глобальний і локальний. Глобальний варіант було створено для загального уявлення про кластеризацію в мережі, в той час як локальний описує вкладеність окремих вузлів.
Remove ads
Глобальний коефіцієнт кластеризації
Узагальнити
Перспектива
Глобальний коефіцієнт кластеризації заснований на трійках вузлів. Трійка складається з трьох з'єднаних вузлів. Тому трикутник включає в себе три замкнуті трійки, по одній по центру на кожному з вузлів (n.b. це означає, що три трійки в трикутнику відбуваються водночас з перекриттям вибору вузлів). Глобальний коефіцієнт кластеризації — це число замкнутих трійок (або 3-х трикутників) над загальним числом трійок (відкритих і закритих). Перша спроба виміряти цей коефіцієнт була зроблена Луче і Перрі (1949).[3] Цей термін дає вказівку на кластеризацію у всій мережі (глобальну), і може бути застосований до обох типів мереж: ненаправлених і спрямованих(часто званих транзитивними див. Вассерман і Фауст, 1994, стор. 243[4]).
Глобальний коефіцієнт кластеризації визначається наступним чином:
У цій формулі, зв'язана трійка визначається як зв'язний підграф, що складається з трьох вершин і двох ребер. Таким чином, кожен трикутник утворює три з'єднаних трійки, пояснюючи множення на три у формулі. Узагальнення на зважені мережі[en] було запропоноване Опсахлем і Панзарасою (2009),[5] і перевизначення, двох режимів мереж(як бінарних так і вагових) було запропоноване Опсахлем (2009).[6]
Remove ads
Локальний коефіціент кластеризації
Узагальнити
Перспектива

Локальний коефіціент кластеризації з вершиною (вузлом) в графі рахує, наскільки близько його сусіди повинні бути угруповані (повний граф). Дункан Уоттс[en] і Стівен Строгац ввели цей термін в 1998 році, щоб визначити, чи є граф графом «Світ тісний».
Граф формально складається з безлічі вершин і набору ребер між ними. Ребро з'єднує вершину з вершиною .
окіл для вершини <математика> визначається за допомогою її сусідів, що пов'язані наступним чином:
Визначимо як число вершин, , як околицю, , як вершину.
Локальний коефіцієнт кластеризації для вершини далі визначається як зв'язки між вершинами в межах його околиць, розділені на кількість посилань, які могли б існувати між ними. Для орієнтованого графа, відрізняється від , і, отже, для кожної околиці є посиланнь, які можуть існувати серед вершин в околиці ( це число сусідів вершини). Таким чином, Локальний коефіціент кластеризації для орієнтованих графів задається як[2]
Неорієнтовані граф володіє такою властивістю, що і вважаються однаковими. Тому, якщо вершина має сусідів, ребер може існувати серед вершин в межах околиці. Таким чином, Локальний коефіціент кластеризації для неорієнтованих графів може бути визначений як
Нехай — це кількість трикутників на множині вершин для неорієнтованого графа . Тобто, це число підграфів з 3-ма ребрами і 3-ма вершинами, одна з яких . Нехай — це число трійок на . Тобто, — це число підграфів (не обов'язково інддукованих) з 2-ма ребрами і 3-ма вершинами, одна з яких є і таке, що інцидентна на обох краях. Тоді ми можемо визначити коефіцієнт кластеризації як
Легко показати, що два попередніх визначення є однаковими, так як
Ці міри є рівними 1, якщо кожен сусід зв'язаний із також пов'язаний з будь-якою іншою вершиною в околиці, і ці міри дорівнюють 0, якщо жодна з вершин, що пов'язана з зв'яжеться з будь-якою іншою вершиною, що пов'язана з .
Мережевий середній коефіцієнт кластеризації
Як альтернатива глобального коефіцієнта кластеризації, загальний рівень кластеризації в мережі був виміряний Уоттсом та Строгацом[2] як середнє значення локальних коефіцієнтів кластеризації всіх вершин :[7]
Варто зазначити, що ця метрика розміщує більше ваги на низьких вузлів ступеня, в той час як співвідношення транзитивності поміщає більше ваги на високих вузлах ступеня. Насправді, зважене середнє, де кожна локальна оцінка кластеризації зважуються по збігається з глобальним коефіцієнтом кластеризації.
Граф вважається графом «Світ тісний», якщо його середній локальний коефіцієнт кластеризації значно вище, ніж у випадкового графа, побудованого на той самій множині вершин, а також якщо граф має приблизно таку ж відстань- найбільш коротку довжину шляху як і відповідний випадковий граф.
Узагальнення терміну зважені мережі[en] було запропоновано Барратом та ін. (2004),[8] і перевизначення до двочасткових графів S (названих також дворежимними мережами) було запропоноване Латапу та ін. (2008)[9] і Опсахлем (2009).[6]
Ця формула не є визначеною для графів з ізольованими вершинами; див. Кайзер (2008)[10] та Бармпотіусом та ін.[11]. Мережі з максимально можливим середнім коефіцієнтом кластеризації мають модульну структуру, і в той же час, вони мають найменшу можливу середню відстань між різними вузлами.[11]
Remove ads
Перколяції кластерних мереж
Для вивчення стійкості кластерних мереж був розроблений перколяційний підхід.[12][13] [14]
Примітки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads