Топ питань
Часова шкала
Чат
Перспективи

Константа Голомба — Дікмана

стала в теорії випадкових перестановок та теорії чисел З Вікіпедії, вільної енциклопедії

Remove ads

У математиці константа Голомба — Дікмана виникає в теорії випадкових перестановок та в теорії чисел. Її значення дорівнює

послідовність A084945 з Онлайн енциклопедії послідовностей цілих чисел, OEIS

Поки невідомо, чи є ця константа раціональною, чи ірраціональною.[1]

Remove ads

Означення

Узагальнити
Перспектива

Нехай буде середнім (взятим за всіма перестановками множини з елементів) значенням довжини найдовшого циклу в кожній перестановці, тоді константа Голомба — Дікмана дорівнює

Мовою теорії ймовірностей, є асимптотою математичного сподівання довжини найдовшого циклу рівномірно розподіленої випадкової перестановки множини з елементів.

У теорії чисел константа Голомба — Дікмана потрібна у зв'язку із середнім значенням довжини найбільшого простого дільника цілого числа. Більш точно,

де  — найбільший простий дільник числа . Таким чином, якщо  -значне ціле число, то  — асимптота середнього значення кількості знаків найбільшого простого дільника числа .

Константу Голомба — Дікмана можна зустріти в теорії чисел також і в іншій ситуації. Яка ймовірність того, що другий за величиною простий дільник числа менший від квадратного кореня з найбільшого простого множника числа ? Асимптотично ця ймовірність дорівнює , точніше:

де  — другий за величиною простий дільник числа .

Константа Голомба — Дікмана також з'являється у випадку, коли розглядаємо середню довжину найбільшого циклу функції від скінченної множини із значеннями у цій множині. Нехай  — скінченна множина, тоді, якщо ми повторно застосовуємо функцію до будь-якого елементу цієї множини, то він входить в цикл, і для деякого маємо: при достатньо великому . Найменше з цією властивістю — довжина циклу. Нехай буде середнім значенням довжини циклу, взятим за всіма функціями від множини розмірності із значеннями у цій множині. Пурдон і Вільямс[2] довели, що

Remove ads

Формули

Узагальнити
Перспектива

Константа може бути предсталена декількома способами:

де  інтегральний логарифм;

де  експоненціальний інтеграл;

та

де  функція Дікмана[en].

Remove ads

Див. також

Посилання

  • Weisstein, Eric W. Golomb-Dickman Constant(англ.) на сайті Wolfram MathWorld.
  • Finch, Steven R. (2003). Mathematical Constants. Cambridge University Press. с. 284–286. ISBN 0-521-81805-2.

Примітки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads