Топ питань
Часова шкала
Чат
Перспективи

Незміщена оцінка

З Вікіпедії, вільної енциклопедії

Remove ads

Незміщена оцінка в математичній статистиці — це точкова оцінка, математичне сподівання якої рівне параметру, що оцінюється.

Означення

  • Статистика називається незміщеною оцінкою параметра , якщо[1]
.

В іншому випадку оцінка називається зміщеною, а випадкова величина називається її зміщенням.

Remove ads

Приклади

  • Вибіркове середнє є незміщеною оцінкою математичного сподівання , оскільки якщо , то .
  • Нехай випадкові величини мають скінченну дисперсію . Побудуємо оцінки :  вибіркова дисперсія, і :  виправлена вибіркова дисперсія.

Тоді є зміщенною, а незміщеною оцінками параметра . Зміщеність можна довести таким чином:

Де і  — середнє і його оцінка відповідно.

Remove ads

Джерела

Примітки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads