Топ питань
Часова шкала
Чат
Перспективи

Нелінійне програмування

оптимізація нелінійної скалярної цільової функції реальних змінних у обмеженій області з нелінійними межами області З Вікіпедії, вільної енциклопедії

Remove ads

Неліні́йне програмува́ння (NLP, англ. NonLinear Programming) — випадок математичного програмування, у якому цільовою функцією чи обмеженнями є нелінійна функція.

Задача нелінійного програмування ставиться як задача знаходження оптимуму певної цільової функції при виконанні умов

,

де  — параметри,  — обмеження, n — кількість параметрів, s — кількість обмежень.

На відміну від задачі лінійного програмування в задачі нелінійного програмування оптимум не обов'язково лежить на границі області, визначеної обмеженнями.

Remove ads

Методи розв'язування задачі

Узагальнити
Перспектива

Одним із методів, які дозволяють звести задачу нелінійного програмування до розв'язування системи рівнянь є метод невизначених множників Лагранжа.

Якщо цільова функція F є лінійною, а обмеженим простором є політоп, то задача є задачею лінійного програмування, яка може бути розв'язана за допомогою добре відомих рішень лінійного програмування.

Якщо цільова функція є увігнутою (задача максимізації), або опуклою (задача мінімізації) і множина обмежень є опуклою, то задачу називають опуклою і в більшості випадків можуть бути використані загальні методи опуклої оптимізації.

Якщо цільова функція є відношенням увігнутих і опуклих функцій (у разі максимізації) і обмеження опуклі, то задача може бути перетворена в задачу опуклої оптимізації використанням технік дробового програмування[en].

Існують декілька методів для розв'язування неопуклих задач. Один підхід полягає у використанні спеціальних формулювань задач лінійного програмування. Інший метод передбачає використання методів гілок і меж, де задача поділяється на підкласи, щоби бути розв'язаною з опуклими (задача мінімізації) або лінійними апроксимаціями, які утворюють нижню межу загальної вартості у межах поділу. При наступних поділах у певний момент буде отримано фактичний розв'язок, вартість якого дорівнює найкращій нижній межі, отриманій для будь-якого з наближених рішень. Цей розв'язок є оптимальним, хоча, можливо, не єдиним. Алгоритм можна також припинити на ранній стадії, з упевненістю, що оптимальний розв'язок знаходиться в межах допустимого відхилення від знайденої кращої точки; такі точки називаються ε-оптимальними. Завершення біля ε-оптимальних точок, як правило, необхідне для забезпечення скінченності завершення. Це особливо корисно для великих, складних задач і задач з невизначеними витратами або значеннями, де невизначеність може бути оцінена з відповідної оцінки надійності.

Диференційовність і умови регулярності, умови Каруша — Куна — Такера (ККТ) забезпечують необхідні умови оптимальності розв'язку. При опуклості, ці умови є й достатніми.

Remove ads

Див. також

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads