Топ питань
Часова шкала
Чат
Перспективи
Поліційне число
кількість поліціянтів, необхідних для виграшу в деякій грі переслідування-ухилення на графі З Вікіпедії, вільної енциклопедії
Remove ads
Поліційне число неорієнтованого графа — це кількість поліціянтів, необхідних для виграшу в деякій грі переслідування-ухилення на графі.
Правила
Узагальнити
Перспектива
У цій грі один гравець керує положенням заданої кількості поліціянтів, а інший гравець керує положенням грабіжника. Поліціянти намагаються схопити грабіжника, пересуваючись у позицію, яку займає грабіжник, тоді як грабіжник прагне не бути схопленим. Гравці почергово роблять такі дії[1]:
- Першим ходом гравець, який керує поліціянтами, поміщає їх на вершини графа (дозволено поміщати в одну вершину більше одного поліціянта).
- Потім гравець, який керує грабіжником, поміщає його у вершину графа.
- Кожним наступним ходом гравець, який керує поліціянтами, вибирає (можливо порожню) їх підмножину і пересуває кожного з них на суміжні вершини. Решта поліціянтів (якщо такі є) залишаються на місці.
- Грабіжник, коли настає його хід, може перейти на суміжну вершину або залишитися на місці.
Гра закінчується виграшем поліціянтів, якщо грабіжник опиняється на одній вершині з поліціянтом. Якщо таке ніколи не відбувається, виграє грабіжник.
Поліцейське число графа — мінімальне число , таке що поліціянтів можуть виграти гру на [1].
Remove ads
Приклад
На дереві поліційне число дорівнює одиниці. Поліціянт може почати грати з будь-якої вершини і кожним ходом пересувтися в єдину вершину, ближчу до грабіжника. Кожен хід поліціянта зменшує розмір піддерева, доступного грабіжнику, тому гра обов'язково завершиться.

У циклічному графі довжиною більше трьох поліційне число дорівнює двом. Якщо є один поліціянт, грабіжник може перейти в позицію за два кроки від поліціянта і завжди зберігати цю відстань. Таким чином, грабіжник уникне ризику бути схопленим. У випадку двох поліціянтів один з них може стояти в одній і тій самій вершині, а грабіжник і другий поліціянт гратимуть на частині, що залишилася. Якщо другий поліціянт дотримується стратегії для дерева, грабіжник, безумовно, програє.
Remove ads
Загальні результати
Узагальнити
Перспектива
Будь-який граф, обхват якого більше 4, має поліційне число, не менше від його найменшого степеня[2]. Звідси випливає, що існують графи з доволі великим поліційним числом.
![]() | Нерозв'язана проблема математики: Яким є найбільше можливе поліційне число графа з n вершинами? (більше нерозв'язаних проблем математики) |
1985 року Генрі Мейнель (відомий за графами Мейнеля) припустив, що будь-який граф із вершинами має поліційне число . Графи Леві скінченних проєктивних площин мають обхват 6 та мінімальний степінь , так що, якщо гіпотеза істинна, ця межа буде найкращою з можливих[3]. Відомо, що всі графи мають сублінійне поліційне число[4], але задачі отримання точної межі або спростування гіпотези Мейнеля залишаються нерозв'язаними[3].
Задача обчислення поліційного числа заданого графа має клас складності EXPTIME[5] і складна в сенсі параметризованої складності[en][6].
Спеціальні класи графів
Виграшні графи поліціянта — це графи з поліційним числом 1[1].
Поліційне число будь-якого планарного графа не перевищує 3[1]. Загальніше, будь-який граф має поліційне число, що не перевищує числа, пропорційного його роду[7]. Однак найкраща відома нижня межа для поліційного числа в термінах роду приблизно дорівнює квадратному кореню з роду, що далеко від верхньої межі, коли рід великий[2].
Деревну ширину графа можна отримати як результат гри псевдопереслідування, але в цій грі грабіжник може рухатися за один хід уздовж довільно довгого шляху, а не на одне ребро. Ця зайва свобода означає, що поліційне число в загальному випадку менше від деревної ширини. Конкретніше, на графах із деревною шириною поліційне число не перевищує [8].
Remove ads
Посилання
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads