Топ питань
Часова шкала
Чат
Перспективи

Радіан

одиниця вимірювання площинних кутів в Міжнародній системі одиниць (SІ). З Вікіпедії, вільної енциклопедії

Радіан
Remove ads

Радіа́нматематиці та фізиці) — це одиниця вимірювання площинних кутів в Міжнародній системі одиниць SI.

Коротка інформація Радіан, Загальна інформація ...

Один радіан — це площинний кут, утворений двома радіусами, так, що довжина дуги між ними дорівнює радіусу кола. Тобто, вимірювання кута в радіанах показує в скільки разів довжина дуги кола, що спирається на цей кут, відрізняється від його радіуса.

Радіан є безрозмірнісною одиницею вимірювання та має позначення рад (міжнародне rad)[4], але, зазвичай, при написанні це позначення не пишеться. При вимірюванні кутів в градусах використовують позначення °, для того щоб відрізнити від величин, виражених в радіанах.

Remove ads

Пояснення

Узагальнити
Перспектива

Повна довжина кола дорівнює r, де r — радіус кола. Тому повне коло є кутом в 2π≈6.28319 радіан. Перетворення радіанів у градуси та навпаки здійснюється так:

 рад ,
1 рад (або ) = .
 рад,
 рад  рад.
Remove ads

Властивості

Широке застосування радіанів в математичному аналізі обумовлено тим, що вирази з тригонометричними функціями, аргументи яких вимірюються в радіанах, набувають максимально простого вигляду (без числових коефіцієнтів). Наприклад, використовуючи радіани, отримаємо просту тотожність

що лежить в основі багатьох елегантних формул в математиці.

При малих кутах синус і тангенс кута, вираженого в радіанах, рівні самому куту, що зручно при наближених обчисленнях.

Косинус малого кута, вираженого в радіанах, наближено дорівнює:

Remove ads

Розмірність

Узагальнити
Перспектива

Радіан є безрозмірнісною одиницею вимірювання. Тобто числове значення кута, що виміряний в радіанах, позбавлене розмірності. Це легко бачити із самого означення радіана, як відношення довжини кола до радіуса. Згідно з рекомендаціями Міжнародного бюро з мір та ваг радіан інтерпретується як одиниця з розмірністю 1 = м·м−1 (м/м, тобто метр на метр — чисельник і знаменник можливо скоротити, тобто він має розмірність 1).

Інакше, безрозмірність радіана можна бачити з виразу ряду Тейлора для тригонометричної функції sin(x):

Якби x мав розмірність, тоді ця сума була б позбавлена змісту — лінійний доданок x не можна було б додати до кубічного x3/3!, як величини різних розмірностей. Отже, x мусить бути безрозмірнісним.

Кутові швидкості теорії електричних машин прийнято вимірювати в електричних радіанах в секунду (ел. рад/с). Зв'язок між кутовими швидкостями ел. рад/с та в механічних одиницях (рад/с) встановлюється окремими залежностями[5].

Див. також

Примітки

Джерела

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads