Топ питань
Часова шкала
Чат
Перспективи

Теорема Барбашина — Красовського

З Вікіпедії, вільної енциклопедії

Remove ads

У теорії звичайних диференціальних рівнянь теоре́ма Барба́шина — Красо́вського (також при́нцип інваріа́нтності ЛаСа́ля; англ. LaSalle's invariance principle) дає достатні умови асимптотичної стійкості нульового розв'язку системи звичайних диференціальних рівнянь.[1] Загальне твердження було незалежно доведене М. М. Красовським[ru][2] та Д. П. ЛаСалєм[3]. В англомовних джерелах результат відомий під назвою принцип інваріантності ЛаСаля (англ. LaSalle's invariance principle), тоді як в українській (та радянській) літературі здебільшого вживається термін теорема Красовського, або теорема Барбашина-Красовського.

Remove ads

Постановка

Стан системи у фазовому просторі (де ) в час даний точкою , де диференційовні функції. Розглянемо систему звичайних диференціальних рівнянь , де неперервна функція, . Систему можна коротко записати як . Припустимо що є точкою рівноваги системи, тобто .

Remove ads

Теорема Барбашина — Красовського

Якщо існує додатно визначена[en] нескінченно велика функція похідна від якої по часу вздовж траєкторій системи є від'ємно-сталою (тобто повсюди), причому рівність можлива на монжині, яка не містить цілих траєкторій, крім точки , то нульовий розв'язок системи рівнянь стійкий в цілому.

Remove ads

Принцип інваріантності ЛаСаля

Нехай скалярна функція з неперервними частковими похідними повсюди яка також задовольняє

  1. коли ,
  2. повсюди,
  3. з тим як .

Якщо рівність можлива на монжині, яка не містить цілих траєкторій, крім точки , то нульовий розв'язок системи рівнянь стійкий в цілому.

Remove ads

Див. також

Примітки

Оригінальні статті

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads