Топ питань
Часова шкала
Чат
Перспективи
Теорема Руше
З Вікіпедії, вільної енциклопедії
Remove ads
Теореми Руше — твердження в комплексному аналізі згідно з яким, якщо функції і голоморфні в однозв'язній області , а на контурі також виконується строга нерівність , то в області функції і мають однакову кількість нулів з урахуванням кратності.
Remove ads
Доведення
Узагальнити
Перспектива
З нерівності випливає, що функції не мають нулів на Поділивши на одержуємо нерівність де
Звідси бачимо, що образ контуру щодо відображення лежить всередині відкритого круга радіуса 1 з центром в точці Оскільки 0 не належить цьому кругу, то функція буде голоморфною в цьому кругу і, відповідно, на контурі і в обмеженій ним області. Тоді згідно з інтегральною теоремою Коші:
Оскільки то звідси
З формули похідної від частки можна одержати:
Підставляючи цей вираз в (*) одержуємо:
або
Оскільки згідно з умовою функції f, g є голоморфними і не мають полюсів, то з принципом аргументу випливає, що кількість нулів для цих функцій в області G має бути однаковою.
Remove ads
Див. також
Література
- Мельник Т.А. (2015). Комплексний аналіз : підручник (PDF). Київ: ВПЦ "Київський університет". с. 192. ISBN 978-966-439-800-5.
- Rudin, Walter (1986). Real and Complex Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill. ISBN 978-0-07-054234-1.
- Zill Dennis G., Shanahan Patrick D., A first course in complex analysis with applications, Jones and Bartlett Publishers, Inc., ISBN 0763714372
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads