Топ питань
Часова шкала
Чат
Перспективи

Теорема косинусів (сферична геометрія)

З Вікіпедії, вільної енциклопедії

Теорема косинусів (сферична геометрія)
Remove ads

В сферичній тригонометрії, теорема косинусів (також відома як правило косинусів для сторін[1]) — формули відношення сторін і кутів сферичних трикутників, аналог теореми косинусів в тригонометрії на площині.

Thumb
Сферичний трикутник

Нехай дана сфера з діаметром 1, сферичний трикутник на сфері визначається трьома великими колами, що поєднують три точки u , v і w на сфері (див. малюнок праворуч). Якщо довжини трьох сторін становлять a (від u' до v), b (від u до w) і c (від v до w), і кут навпроти c є C, тоді (перший) сферична теорема косинусів стверджує:[2][1]

Через те, що це одинична сфера, довжини a, b і c просто дорівнюють кутам (в радіанах) утвореним радіусами сфери проведеними до кінців відповідної сторони (для не одиничної сфери довжини сторін дорівнюють добутку дугового кута на радіус). В особливому випадку, коли , тоді і ми отримуємо сферичний аналог теореми Піфагора:

Різновидом теореми косинусів, друга сферична теорема косинусів,[3] (також відома як правило косинусів для кутів[1]) стверджує:

де A та B це кути протилежні до сторін a і b, відповідно.

Для маленького сферичного трикутника, тобто для маленьких a, b і c, сферична теорема косинусів наближається до теореми косинусів на площині,

Помилка в цьому наближенні, може бути обчислена з ряду Тейлора для функцій косинуса та синуса, і становить:

Remove ads

Доведення

Узагальнити
Перспектива

Доведення може бути побудоване наступним чином.[2] Нехай u, v, і w означають одиничні вектори з центру сфери до кутів трикутника. Тоді, довжини (кути) сторін задаються як скалярні добутки:

Для отримання кута C, нам потрібен дотичні вектори ta і tb в u уздовж напрямків сторін a і b, відповідно. Наприклад, дотичний вектор ta це одиничний вектор перпендикулярний до u в площині u-v, напрямок якого задається компонентом v перпендикулярним до u. Це означає:

.

Аналогічно,

Тоді кут C отримаємо як:

звідки негайно отримуємо теорему косинусів.

Як наслідок легко отримати другу теорему косинусів.

Remove ads

Теорема синусів для тригранного кута

.

Remove ads

Примітки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads