Топ питань
Часова шкала
Чат
Перспективи

Функція Томе

З Вікіпедії, вільної енциклопедії

Функція Томе
Remove ads

Функція Томе — це визначена на множині дійсних чисел функція від дійсної змінної , що названа на честь Карла Йоганнеса Томе[en]. Вона має багато назв: модифікована функція Діріхле, функція Рімана, краплева функція, лінійкова функція, Зірка Вавилона[1]. Визначення можна записати так:

Thumb
Графік функції Томе на інтервалі (0,1). Показані всі раціональні точки із знаменником не більше 200.

У даному означенні вважається, що дріб є нескоротним.

Remove ads

Властивості

Справді, для будь-якого маємо
оскільки завжди можна підібрати проколотий окіл настільки малим, щоб усі належні до нього раціональні числа мали достатньо великі знаменники. З означення функції Томе і означення неперервності функції одержуємо необхідне твердження.
Справді, нехай Z  — деяке розбиття області інтегрування і  — довжини проміжків розбиття. Позначимо також коливання Функції Томе на проміжку і. Кількість раціональних чисел, що записуються як нескоротний дріб із знаменниками де є, очевидно, деяким скінченним числом k. Тоді кількість проміжків розбиття, що містять такі числа, рівна щонайбільше 2k, а їх сукупна довжина не перевищує . На інших проміжках коливання функції є меншим . Остаточно можемо записати:
, де d   -- довжина області інтегрування.
Узявши N достатньо великим, а достатньо малим, можемо зробити цю суму як завгодно малою, звідки й випливає інтегровність за Ріманом.
Remove ads

Див. також

Примітки

Література

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads