Hoán vị chẵn và lẻ
From Wikipedia, the free encyclopedia
Remove ads
Hoán vị chẵn và lẻ. Ta cũng có thể biểu diễn mỗi hoán vị dưới dạng một hàm song ánh như sau. Cho X là tập gồm n phần tử. Một hoán vị của X là một hàm song ánh σ: X → X. Ví dụ
(a b c d e)
![]() | Bài viết hoặc đoạn này cần được wiki hóa để đáp ứng tiêu chuẩn quy cách định dạng và văn phong của Wikipedia. |
Bài này không có nguồn tham khảo nào. |
σ =
(c d a e b)
Ký hiệu X = {x1, x2,..., xn } và Sn là tập tất cả các hoán vị của X. Tập Sn chứa các hoán vị được biểu diễn dưới dạng các dãy: σ = <σ(x 1), σ(x 2),..., σ(x n)> Chú ý rằng ∀ i, j: i 6= j ⇔ x i != x j. Như vậy |Sn| = n!. Với mỗi hoán vị σ, ta gọi cặp (x i, x j) là một nghịch thế của σ nếu x i < x j nhưng σ (x i) > σ (x j). Mỗi hoán vị đều nằm ở một trong hai lớp kích thước bằng nhau là lớp các hoán vị chẵn và lớp các hoán vị lẻ. Tính chẵn lẻ của ột hoán vị σ của X là tính chẵn lẻ của số nghịch thế của σ: Nếu số cặp (xi, xj) trong đó xi < xj và σ (xi) > σ (xj) là một số chẵn thì σ là hoán vị chẵn; Ngược lại σ là hoán vị lẻ.
Remove ads
Tham khảo
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads