热门问题
时间线
聊天
视角

五维超正方体

来自维基百科,自由的百科全书

五维超正方体
Remove ads

五维超立方体(Penteract)或称正十超胞体(Decateron)是3个五维凸正多超胞体之一,是五维的超方形,四维超正方体、三维正方体、二维正方形的五维类比。由10个四维超立方体胞、40个正方体胞、80个正方形面、80条棱、32个顶点组成。

事实速览 五维超正方体(10超胞体), 类型 ...
Remove ads

几何性质

五维超正方体存在于五维欧几里得空间中,其32个顶点有如下形式:

(±1,±1,±1,±1,±1)

五维超正方体是它们的凸包。它包含了所有坐标值绝对值都小于等于1的所有点。在它的顶点处有5条棱相交,应此它的顶点图正五胞体,在它的棱处有4个立方体维脊相交,应此它的棱图正四面体。它有施莱夫利符号{4,3,3,3},考斯特-迪肯符号node_1 4 node 3 node 3 node 3 node ,它的对偶多超胞体是正三十二超胞体(Triacontaditeron),也叫五维正轴体(Pentacross,5-orthoplex)。

对称群构造

作为五维的立方形,一个五维凸正多超胞体,它具有BC5对称群构造,对应施莱夫利符号{4,3,3,3},考斯特-迪肯符号node_1 4 node 3 node 3 node 3 node 。同时,它可被看作是四维超正方体的棱柱,对应施莱夫利符号{4,3,3}×{},考斯特-迪肯符号node_1 4 node 3 node 3 node 2 node_1 。并且,它还是正方形和立方体的乘积,在3个维度有立方体的对称性BC3,而在另外两个维度表现出正方形的对称性BC2,施莱夫利符号{4,3}×{4},考斯特-迪肯符号node_1 4 node 3 node 2 node_1 4 node 

图像

五维超立方体可以以自身的BCn(n≤5)对称性被平行投影到2维平面上:

更多信息 考克斯特平面(英语:Coxeter plane), B5 ...
更多正交投影
Thumb
斜线架投影
Thumb
B5考克斯特平面
Graph
Thumb
顶点—棱图象。
透视投影
Thumb
五维超立方体的5D到4D施莱尔投影的4D到3D球极投影的3D到2D透视投影

在五维空间旋转的透视投影

相关链接

参考文献

更多信息 五维正多胞体 ...
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads