杰恩斯-卡明斯模型(Jaynes–Cummings model (JCM))是一个量子光学的理论模型。 这是一个描述双态系统和量子化光腔(optical cavity)交互作用的模型,这种交互作用和光子的存在与否无关(在电磁辐射能造成光子自发性的放射与吸收)。它主要被运用在原子物理学、量子光学、固态量子信息电路的理论与实验上。 此条目翻译品质不佳,原文在en:Jaynes–Cummings model。 (2025年4月4日) 杰恩斯-卡明斯模型。圆圈内展示了光子的发射与吸收 公式 系统哈密顿量 H ^ = H ^ field + H ^ atom + H ^ int {\displaystyle {\hat {H}}={\hat {H}}_{\text{field}}+{\hat {H}}_{\text{atom}}+{\hat {H}}_{\text{int}}} 由自由场哈密顿量,原子激发态哈密顿量,JCM哈密顿量组成: H ^ field = ℏ ω c a ^ † a ^ H ^ atom = ℏ ω a σ ^ z 2 H ^ int = ℏ Ω 2 E ^ S ^ . {\displaystyle {\begin{array}{lcl}{\hat {H}}_{\text{field}}&=&\hbar \omega _{c}{\hat {a}}^{\dagger }{\hat {a}}\\{\hat {H}}_{\text{atom}}&=&\hbar \omega _{a}{\frac {{\hat {\sigma }}_{z}}{2}}\\{\hat {H}}_{\text{int}}&=&{\frac {\hbar \Omega }{2}}{\hat {E}}{\hat {S}}.\end{array}}} 为方便起见,设真空场能量为 0 {\displaystyle 0} . 其中: E ^ = a ^ + a ^ † {\displaystyle {\begin{smallmatrix}{\hat {E}}={\hat {a}}+{\hat {a}}^{\dagger }\end{smallmatrix}}} 场运算符,目的是把量化辐射场转化为玻色子的模型,另外双态原子是能被三维布洛赫球面所描述的半自旋粒子 a ^ † {\displaystyle {\begin{smallmatrix}{\hat {a}}^{\dagger }\end{smallmatrix}}} 是玻色子的创生算符 a ^ {\displaystyle {\begin{smallmatrix}{\hat {a}}\end{smallmatrix}}} 是玻色子的湮灭算符 S ^ = σ ^ + + σ ^ − {\displaystyle {\begin{smallmatrix}{\hat {S}}={\hat {\sigma }}_{+}+{\hat {\sigma }}_{-}\end{smallmatrix}}} 是原子耦合区的偏振运算符 σ ^ + = | e ⟩ ⟨ g | {\displaystyle {\begin{smallmatrix}{\hat {\sigma }}_{+}=|e\rangle \langle g|\end{smallmatrix}}} 与 σ ^ − = | g ⟩ ⟨ e | {\displaystyle {\begin{smallmatrix}{\hat {\sigma }}_{-}=|g\rangle \langle e|\end{smallmatrix}}} 是原子的阶梯算符 σ ^ z = | e ⟩ ⟨ e | − | g ⟩ ⟨ g | {\displaystyle {\begin{smallmatrix}{\hat {\sigma }}_{z}=|e\rangle \langle e|-|g\rangle \langle g|\end{smallmatrix}}} 是原子反转运算符 ω a {\displaystyle {\begin{smallmatrix}\omega _{a}\end{smallmatrix}}} 是原子的跃迁频率 ω c {\displaystyle {\begin{smallmatrix}\omega _{c}\end{smallmatrix}}} 是模型的角频率 Remove adsJCM哈密顿量 通过把薛定谔绘景转换为相互作用绘景(又名旋转框架(rotating frame)) ,使得 H 0 = H ^ field + H ^ atom {\displaystyle {\begin{smallmatrix}H_{0}={\hat {H}}_{\text{field}}+{\hat {H}}_{\text{atom}}\end{smallmatrix}}} ,可以得到: H ^ int ( t ) = ℏ Ω 2 ( a ^ σ ^ − e − i ( ω c + ω a ) t + a ^ † σ ^ + e i ( ω c + ω a ) t + a ^ σ ^ + e i ( − ω c + ω a ) t + a ^ † σ ^ − e − i ( − ω c + ω a ) t ) . {\displaystyle {\hat {H}}_{\text{int}}(t)={\frac {\hbar \Omega }{2}}\left({\hat {a}}{\hat {\sigma }}_{-}e^{-i(\omega _{c}+\omega _{a})t}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{+}e^{i(\omega _{c}+\omega _{a})t}+{\hat {a}}{\hat {\sigma }}_{+}e^{i(-\omega _{c}+\omega _{a})t}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}e^{-i(-\omega _{c}+\omega _{a})t}\right).} 这个哈密顿量同时包含了两个部分: ( ω c + ω a ) {\displaystyle {\begin{smallmatrix}(\omega _{c}+\omega _{a})\end{smallmatrix}}} 是快速震荡, ( ω c − ω a ) {\displaystyle {\begin{smallmatrix}(\omega _{c}-\omega _{a})\end{smallmatrix}}} 是慢速震荡。 为了求解这个方程,简化模型是再所难免的。注意到,当 | ω c − ω a | ≪ ω c + ω a {\displaystyle {\begin{smallmatrix}|\omega _{c}-\omega _{a}|\ll \omega _{c}+\omega _{a}\end{smallmatrix}}} 的时候,快速振荡的 “反向旋转”项(也就是快速震荡项)可被忽略,这被称为旋波近似。再将之转换回薛定谔绘景,JCM哈密顿量就变成了: H ^ JC = ℏ ω c a ^ † a ^ + ℏ ω a σ ^ z 2 + ℏ Ω 2 ( a ^ σ ^ + + a ^ † σ ^ − ) . {\displaystyle {\hat {H}}_{\text{JC}}=\hbar \omega _{c}{\hat {a}}^{\dagger }{\hat {a}}+\hbar \omega _{a}{\frac {{\hat {\sigma }}_{z}}{2}}+{\frac {\hbar \Omega }{2}}\left({\hat {a}}{\hat {\sigma }}_{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}\right).} 其中, ℏ Ω / 2 = d ( ω a / ℏ V ϵ 0 ) 1 / 2 {\displaystyle {\begin{smallmatrix}\hbar \Omega /2=d(\omega _{a}/\hbar V\epsilon _{0})^{1/2}\end{smallmatrix}}} 是原子场的耦合常数, d {\displaystyle {\begin{smallmatrix}d\end{smallmatrix}}} 是原子跃迁时刻, V {\displaystyle {\begin{smallmatrix}V\end{smallmatrix}}} 是腔模的体积。 Remove ads本征态 一般情况下,将哈密顿量拆分为2部分有助于对其进行求解: H ^ JC = H ^ I + H ^ I I , {\displaystyle {\hat {H}}_{\text{JC}}={\hat {H}}_{I}+{\hat {H}}_{II},} 其中, H ^ I = ℏ ω c ( a ^ † a ^ + σ ^ z 2 ) H ^ I I = ℏ δ σ ^ z 2 + ℏ Ω 2 ( a ^ σ ^ + + a ^ † σ ^ − ) {\displaystyle {\begin{array}{lcl}{\hat {H}}_{I}&=&\hbar \omega _{c}\left({\hat {a}}^{\dagger }{\hat {a}}+{\frac {{\hat {\sigma }}_{z}}{2}}\right)\\{\hat {H}}_{II}&=&\hbar \delta {\frac {{\hat {\sigma }}_{z}}{2}}+{\frac {\hbar \Omega }{2}}\left({\hat {a}}{\hat {\sigma }}_{+}+{\hat {a}}^{\dagger }{\hat {\sigma }}_{-}\right)\end{array}}} δ = ω a − ω c {\displaystyle {\begin{smallmatrix}\delta =\omega _{a}-\omega _{c}\end{smallmatrix}}} 称之为场与双态系统的失谐量(频率)。为了更好地求解哈密顿量,把 H ^ I {\displaystyle {\begin{smallmatrix}{\begin{smallmatrix}{\hat {H}}_{I}\end{smallmatrix}}\end{smallmatrix}}} 的本征态转换成张量积 | n , g ⟩ , | n , e ⟩ {\displaystyle {\begin{smallmatrix}|n,g\rangle ,|n,e\rangle \end{smallmatrix}}} ( n ∈ N {\displaystyle {\begin{smallmatrix}n\in \mathbb {N} \end{smallmatrix}}} ,表示模型中辐射量子的数量。) 对位任意正整数n,状态 | ψ 1 n ⟩ := | n , e ⟩ {\displaystyle {\begin{smallmatrix}|\psi _{1n}\rangle :=|n,e\rangle \end{smallmatrix}}} 与状态 | ψ 2 n ⟩ := | n + 1 , g ⟩ {\displaystyle {\begin{smallmatrix}|\psi _{2n}\rangle :=|n+1,g\rangle \end{smallmatrix}}} 会退化为 H ^ I {\displaystyle {\begin{smallmatrix}{\hat {H}}_{I}\end{smallmatrix}}} , H ^ JC {\displaystyle {\begin{smallmatrix}{\hat {H}}_{\text{JC}}\end{smallmatrix}}} 足以在子空间 span { | ψ 1 n ⟩ , | ψ 2 n ⟩ } {\displaystyle {\begin{smallmatrix}{\text{span}}\{|\psi _{1n}\rangle ,|\psi _{2n}\rangle \}\end{smallmatrix}}} 对角化。 H ^ JC {\displaystyle {\begin{smallmatrix}{\hat {H}}_{\text{JC}}\end{smallmatrix}}} 的元素属于 H i j ( n ) := ⟨ ψ i n | H ^ JC | ψ j n ⟩ {\displaystyle {\begin{smallmatrix}{H}_{ij}^{(n)}:=\langle \psi _{in}|{\hat {H}}_{\text{JC}}|\psi _{jn}\rangle \end{smallmatrix}}} 的子空间,表示为: H ( n ) = ℏ ( n ω c + ω a 2 Ω 2 n + 1 Ω 2 n + 1 ( n + 1 ) ω c − ω a 2 ) {\displaystyle H^{(n)}=\hbar {\begin{pmatrix}n\omega _{c}+{\frac {\omega _{a}}{2}}&{\frac {\Omega }{2}}{\sqrt {n+1}}\\[8pt]{\frac {\Omega }{2}}{\sqrt {n+1}}&(n+1)\omega _{c}-{\frac {\omega _{a}}{2}}\end{pmatrix}}} 对于任意正整数n,能量本征态 H ( n ) {\textstyle {\begin{smallmatrix}H^{(n)}\end{smallmatrix}}} 为: E ± ( n ) = ℏ ω c ( n + 1 2 ) ± 1 2 ℏ Ω n ( δ ) , {\displaystyle E_{\pm }(n)=\hbar \omega _{c}\left(n+{\frac {1}{2}}\right)\pm {\frac {1}{2}}\hbar \Omega _{n}(\delta ),} 其中, Ω n ( δ ) = δ 2 + Ω 2 ( n + 1 ) {\displaystyle {\begin{smallmatrix}\Omega _{n}(\delta )={\sqrt {\delta ^{2}+\Omega ^{2}(n+1)}}\end{smallmatrix}}} 是拉比频率特殊的失谐参数。 含能量本征态 | n , ± ⟩ {\displaystyle {\begin{smallmatrix}|n,\pm \rangle ~\end{smallmatrix}}} 的特征值是: | n , + ⟩ = cos ( α n 2 ) | ψ 1 n ⟩ + sin ( α n 2 ) | ψ 2 n ⟩ {\displaystyle |n,+\rangle =\cos \left({\frac {\alpha _{n}}{2}}\right)|\psi _{1n}\rangle +\sin \left({\frac {\alpha _{n}}{2}}\right)|\psi _{2n}\rangle } | n , − ⟩ = − sin ( α n 2 ) | ψ 1 n ⟩ + cos ( α n 2 ) | ψ 2 n ⟩ {\displaystyle |n,-\rangle =-\sin \left({\frac {\alpha _{n}}{2}}\right)|\psi _{1n}\rangle +\cos \left({\frac {\alpha _{n}}{2}}\right)|\psi _{2n}\rangle } 其中, ∠ α n = tan − 1 ( Ω n + 1 δ ) {\displaystyle {\begin{smallmatrix}\angle \alpha _{n}=\tan ^{-1}\left({\frac {\Omega {\sqrt {n+1}}}{\delta }}\right)\end{smallmatrix}}} Remove ads薛定谔绘景动量 为了得到动量的一般情况。 首先考虑一个场叠加态的初态 | ψ field ( 0 ) ⟩ = ∑ n C n | n ⟩ {\displaystyle {\begin{smallmatrix}~|\psi _{\text{field}}(0)\rangle =\sum _{n}{C_{n}|n\rangle }~\end{smallmatrix}}} ,若置一激发态原子于场内,则系统初态为: | ψ tot ( 0 ) ⟩ = ∑ n C n [ cos ( α n 2 ) | n , + ⟩ − sin ( α n 2 ) | n , − ⟩ ] . {\displaystyle |\psi _{\text{tot}}(0)\rangle =\sum _{n}C_{n}\left[\cos \left({\frac {\alpha _{n}}{2}}\right)|n,+\rangle -\sin \left({\frac {\alpha _{n}}{2}}\right)|n,-\rangle \right].} 其中 | n , ± ⟩ {\displaystyle {\begin{smallmatrix}~|n,\pm \rangle ~\end{smallmatrix}}} 是该系统的定态, 含时状态向量是: | ψ tot ( t ) ⟩ = e − i H ^ JC t / ℏ | ψ tot ( 0 ) ⟩ = ∑ n C n [ cos ( α n 2 ) | n , + ⟩ e − i E + ( n ) t / ℏ − sin ( α n 2 ) | n , − ⟩ e − i E − ( n ) t / ℏ ] , t > 0 {\displaystyle |\psi _{\text{tot}}(t)\rangle =e^{-i{\hat {H}}_{\text{JC}}t/\hbar }|\psi _{\text{tot}}(0)\rangle =\sum _{n}C_{n}\left[\cos \left({\frac {\alpha _{n}}{2}}\right)|n,+\rangle e^{-iE_{+}(n)t/\hbar }-\sin \left({\frac {\alpha _{n}}{2}}\right)|n,-\rangle e^{-iE_{-}(n)t/\hbar }\right],t>0} Remove ads相互作用绘景动量 可以直接通过海森堡记法(Heisenberg notation)来确定幺正演化算符(unitary evolution operator) :[1] U ^ ( t ) = e − i H ^ JC t / ℏ = ( e − i ω c t ( a ^ † a ^ + 1 2 ) ( cos t φ ^ + g 2 − i δ / 2 sin t φ ^ + g 2 φ ^ + g 2 ) − i g e − i ω c t ( a ^ † a ^ + 1 2 ) sin t φ ^ + g 2 φ ^ + g 2 a ^ − i g e − i ω c t ( a ^ † a ^ − 1 2 ) sin t φ ^ φ ^ a ^ † e − i ω c t ( a ^ † a ^ − 1 2 ) ( cos t φ ^ + i δ / 2 sin t φ ^ φ ^ ) ) {\displaystyle {\begin{matrix}{\begin{aligned}{\hat {U}}(t)&=e^{-i{\hat {H}}_{\text{JC}}t/\hbar }\\&={\begin{pmatrix}e^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}+{\frac {1}{2}})}\left(\cos t{\sqrt {{\hat {\varphi }}+g^{2}}}-i\delta /2{\frac {\sin t{\sqrt {{\hat {\varphi }}+g^{2}}}}{\sqrt {{\hat {\varphi }}+g^{2}}}}\right)&-ige^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}+{\frac {1}{2}})}{\frac {\sin t{\sqrt {{\hat {\varphi }}+g^{2}}}}{\sqrt {{\hat {\varphi }}+g^{2}}}}\,{\hat {a}}\\-ige^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}-{\frac {1}{2}})}{\frac {\sin t{\sqrt {\hat {\varphi }}}}{\sqrt {\hat {\varphi }}}}{\hat {a}}^{\dagger }&e^{-i\omega _{c}t({\hat {a}}^{\dagger }{\hat {a}}-{\frac {1}{2}})}\left(\cos t{\sqrt {\hat {\varphi }}}+i\delta /2{\frac {\sin t{\sqrt {\hat {\varphi }}}}{\sqrt {\hat {\varphi }}}}\right)\end{pmatrix}}\end{aligned}}\end{matrix}}} 其中,定义算符 φ ^ {\displaystyle ~{\hat {\varphi }}~} 为 φ ^ = g 2 a ^ † a ^ + δ 2 / 4 {\displaystyle {\hat {\varphi }}=g^{2}{\hat {a}}^{\dagger }{\hat {a}}+\delta ^{2}/4} U ^ {\displaystyle ~{\hat {U}}~} 的幺正(unitary )被恒等定义: sin t φ ^ + g 2 φ ^ + g 2 a ^ = a ^ sin t φ ^ φ ^ , {\displaystyle {\frac {\sin t\,{\sqrt {{\hat {\varphi }}+g^{2}}}}{\sqrt {{\hat {\varphi }}+g^{2}}}}\;{\hat {a}}={\hat {a}}\;{\frac {\sin t\,{\sqrt {\hat {\varphi }}}}{\sqrt {\hat {\varphi }}}},} cos t φ ^ + g 2 a ^ = a ^ cos t φ ^ , {\displaystyle \cos t\,{\sqrt {{\hat {\varphi }}+g^{2}}}\;{\hat {a}}={\hat {a}}\;\cos t{\sqrt {\hat {\varphi }}},} 幺正算符可以计算被密度矩阵 ρ ^ ( t ) {\displaystyle ~{\hat {\rho }}(t)~} 所描述的含时系统状态的演变,幺正算符包含了所有可观测量。给定初态 ρ ^ ( 0 ) {\displaystyle ~{\hat {\rho }}(0)~} ,则有: ρ ^ ( t ) = U ^ † ( t ) ρ ^ ( 0 ) U ^ ( t ) {\displaystyle {\hat {\rho }}(t)={\hat {U}}^{\dagger }(t){\hat {\rho }}(0){\hat {U}}(t)} , ⟨ Θ ^ ⟩ t = Tr [ ρ ^ ( t ) Θ ^ ] {\displaystyle \langle {\hat {\Theta }}\rangle _{t}={\text{Tr}}[{\hat {\rho }}(t){\hat {\Theta }}]} , 其中, Θ ^ {\displaystyle ~{\hat {\Theta }}~} 是表示可观测量的算符。 Remove ads量子震荡的崩塌和复兴 原子反转的量子震荡图像(二次反比失谐参数 a = ( δ / ( 2 g ) ) 2 = 40 {\displaystyle {\begin{smallmatrix}a=(\delta /(2g))^{2}=40\end{smallmatrix}}} , 其中 δ {\displaystyle \delta } 是失谐参数),基于 A.A. Karatsuba 和 E.A. Karatsuba 取得的基本公式[2]。 Remove ads参考资料Loading content...参考文献Loading content...延伸阅读Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads