控制理论中,可控制性格拉姆矩阵(Controllability Gramian)是用来判断线性动态系统是否可控制的格拉姆矩阵。 若针对以下的线性时变系统 x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) {\displaystyle {\dot {x}}(t)=A(t)x(t)+B(t)u(t)} y ( t ) = C ( t ) x ( t ) + D ( t ) u ( t ) {\displaystyle y(t)=C(t)x(t)+D(t)u(t)\,} 可控制性格拉姆矩阵为 W c ( t 0 , t 1 ) = ∫ t 0 t 1 Φ ( τ , t 0 ) B ( τ ) B T ( τ ) Φ T ( τ , t 0 ) d τ {\displaystyle W_{c}(t_{0},t_{1})=\int _{t_{0}}^{t_{1}}\Phi (\tau ,t_{0})B(\tau )B^{T}(\tau )\Phi ^{T}(\tau ,t_{0})d\tau } , 其中 Φ {\displaystyle \Phi } 为状态转换矩阵 系统在 t ∈ [ t 0 , t 1 ] {\displaystyle t\in [t_{0},t_{1}]} 具有可控制性,当且仅当 W c ( t 0 , t 1 ) {\displaystyle W_{c}(t_{0},t_{1})} 为非奇异矩阵。 Remove ads连续时间,线性非时变系统 若在连续时间的线性非时变系统中,也可以定义可控制性格拉姆矩阵(不过也有其他判断可观测性的方法)。 若考虑以下的系统 x ˙ ( t ) = A x ( t ) + B u ( t ) {\displaystyle {\dot {x}}(t)=Ax(t)+Bu(t)} y ( t ) = C x ( t ) + D u ( t ) {\displaystyle y(t)=Cx(t)+Du(t)\,} 其可控制性格拉姆矩阵是以下 n × n {\displaystyle n\times n} 的方阵 W c ( t ) = ∫ 0 t e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}(t)=\int _{0}^{t}e^{{\boldsymbol {A}}\tau }{\boldsymbol {B}}{\boldsymbol {B^{T}}}e^{{\boldsymbol {A}}^{T}\tau }d\tau } A {\displaystyle {\boldsymbol {A}}} 若稳定(所有的特征值实部均为负),可控制性格拉姆矩阵也是以下李亚普诺夫方程的唯一解 A W c + W c A T = − B B T {\displaystyle {\boldsymbol {A}}{\boldsymbol {W}}_{c}+{\boldsymbol {W}}_{c}{\boldsymbol {A^{T}}}=-{\boldsymbol {BB^{T}}}} A {\displaystyle {\boldsymbol {A}}} 若稳定(所有的特征值实部均为负),而且 W c {\displaystyle {\boldsymbol {W}}_{c}} 也是正定矩阵,则此系统具有可控制性,也就是 ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} 矩阵对具有可控制性。 此一定义也和以下其他可控制性的定义等效: 1. n × n p {\displaystyle n\times np} 的可控制性矩阵 C = [ B A B A 2 B . . . A n − 1 B ] {\displaystyle {\mathcal {C}}=[{\begin{array}{ccccc}{\boldsymbol {B}}&{\boldsymbol {AB}}&{\boldsymbol {A^{2}B}}&...&{\boldsymbol {A^{n-1}B}}\end{array}}]} 的秩为n。 2. n × ( n + p ) {\displaystyle n\times (n+p)} 矩阵 [ A − λ I B ] {\displaystyle [{\begin{array}{cc}{\boldsymbol {A}}{\boldsymbol {-\lambda }}{\boldsymbol {I}}&{\boldsymbol {B}}\end{array}}]} 对于每个 A {\displaystyle {\boldsymbol {A}}} 的特征值 λ {\displaystyle \lambda } ,都有满秩。 Remove ads和李亚普诺夫方程的关系 可控制性格拉姆矩阵是以下李亚普诺夫方程的解 A W c + W c A T = − B B T {\displaystyle {\boldsymbol {A}}{\boldsymbol {W}}_{c}+{\boldsymbol {W}}_{c}{\boldsymbol {A^{T}}}=-{\boldsymbol {BB^{T}}}} 假若令 W c = ∫ 0 ∞ e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}=\int _{0}^{\infty }e^{{\boldsymbol {A}}\tau }{\boldsymbol {BB^{T}}}e^{{\boldsymbol {A}}^{T}\tau }d\tau } 为一个解,可得: A W c + W c A T = ∫ 0 ∞ A e A τ B B T e A T τ d τ + ∫ 0 ∞ e A τ B B T e A T τ A T d τ = ∫ 0 ∞ d d τ ( e A τ B B T e A T τ ) d τ = e A t B B T e A T t | t = 0 ∞ = 0 − B B T = − B B T {\displaystyle {\begin{array}{ccccc}{\boldsymbol {A}}{\boldsymbol {W}}_{c}+{\boldsymbol {W}}_{c}{\boldsymbol {A^{T}}}&=&\int _{0}^{\infty }{\boldsymbol {A}}e^{{\boldsymbol {A}}\tau }{\boldsymbol {BB^{T}}}e^{{\boldsymbol {A}}^{T}\tau }d\tau &+&\int _{0}^{\infty }e^{{\boldsymbol {A}}\tau }{\boldsymbol {BB^{T}}}e^{{\boldsymbol {A}}^{T}\tau }{\boldsymbol {A^{T}}}d\tau \\&=&\int _{0}^{\infty }{\frac {d}{d\tau }}(e^{{\boldsymbol {A}}\tau }{\boldsymbol {B}}{\boldsymbol {B}}^{T}e^{{\boldsymbol {A}}^{T}\tau })d\tau &=&e^{{\boldsymbol {A}}t}{\boldsymbol {B}}{\boldsymbol {B}}^{T}e^{{\boldsymbol {A}}^{T}t}|_{t=0}^{\infty }\\&=&{\boldsymbol {0}}-{\boldsymbol {BB^{T}}}\\&=&{\boldsymbol {-BB^{T}}}\end{array}}} 其中用到了对于稳定 A {\displaystyle {\boldsymbol {A}}} ,在 t = ∞ {\displaystyle t=\infty } 时, e A t = 0 {\displaystyle e^{{\boldsymbol {A}}t}=0} 的事实(所有的特征值实部均为负),因此 W c {\displaystyle {\boldsymbol {W}}_{c}} 确实是李亚普诺夫方程的解。 Remove ads格拉姆矩阵的性质 因为 B B T {\displaystyle {\boldsymbol {BB^{T}}}} 是对称矩阵,因此 W c {\displaystyle {\boldsymbol {W}}_{c}} 也是对称矩阵。 若 A {\displaystyle {\boldsymbol {A}}} 是稳定矩阵(所有的特征值实部均为负),可以证明 W c {\displaystyle {\boldsymbol {W}}_{c}} 是唯一的。利甪反证法,先假设以下方程有二个不同解 A W c + W c A T = − B B T {\displaystyle {\boldsymbol {A}}{\boldsymbol {W}}_{c}+{\boldsymbol {W}}_{c}{\boldsymbol {A^{T}}}=-{\boldsymbol {BB^{T}}}} 分别是 W c 1 {\displaystyle {\boldsymbol {W}}_{c1}} 和 W c 2 {\displaystyle {\boldsymbol {W}}_{c2}} ,因此可得: A ( W c 1 − W c 2 ) + ( W c 1 − W c 2 ) A T = 0 {\displaystyle {\boldsymbol {A}}{\boldsymbol {(W}}_{c1}-{\boldsymbol {W}}_{c2})+{\boldsymbol {(W}}_{c1}-{\boldsymbol {W}}_{c2}){\boldsymbol {A^{T}}}={\boldsymbol {0}}} 在左右分别乘以 e A t {\displaystyle e^{{\boldsymbol {A}}t}} 和 e A T t {\displaystyle e^{{\boldsymbol {A}}^{T}t}} ,可得: e A t [ A ( W c 1 − W c 2 ) + ( W c 1 − W c 2 ) A T ] e A T t = d d t [ e A t [ ( W c 1 − W c 2 ) e A T t ] = 0 {\displaystyle e^{{\boldsymbol {A}}t}[{\boldsymbol {A}}{\boldsymbol {(W}}_{c1}-{\boldsymbol {W}}_{c2})+{\boldsymbol {(W}}_{c1}-{\boldsymbol {W}}_{c2}){\boldsymbol {A^{T}}}]e^{{\boldsymbol {A^{T}}}t}={\frac {d}{dt}}[e^{{\boldsymbol {A}}t}[({\boldsymbol {W}}_{c1}-{\boldsymbol {W}}_{c2})e^{{\boldsymbol {A^{T}}}t}]={\boldsymbol {0}}} 从 0 {\displaystyle 0} 积分到 ∞ {\displaystyle \infty } : [ e A t [ ( W c 1 − W c 2 ) e A T t ] | t = 0 ∞ = 0 {\displaystyle [e^{{\boldsymbol {A}}t}[({\boldsymbol {W}}_{c1}-{\boldsymbol {W}}_{c2})e^{{\boldsymbol {A^{T}}}t}]|_{t=0}^{\infty }={\boldsymbol {0}}} 再利用此一事实,当 t → ∞ {\displaystyle t\rightarrow \infty } 时, e A t → 0 {\displaystyle e^{{\boldsymbol {A}}t}\rightarrow 0} : 0 − ( W c 1 − W c 2 ) = 0 {\displaystyle {\boldsymbol {0}}-({\boldsymbol {W}}_{c1}-{\boldsymbol {W}}_{c2})={\boldsymbol {0}}} 因此, W c {\displaystyle {\boldsymbol {W}}_{c}} 是唯一的。 也可以看出 x T W c x = ∫ 0 ∞ x T e A t B B T e A T t x d t = ∫ 0 ∞ ‖ B T e A T t x ‖ 2 2 d t {\displaystyle {\boldsymbol {x^{T}W_{c}x}}=\int _{0}^{\infty }{\boldsymbol {x}}^{T}e^{{\boldsymbol {A}}t}{\boldsymbol {BB^{T}}}e^{{\boldsymbol {A}}^{T}t}{\boldsymbol {x}}dt=\int _{0}^{\infty }\left\Vert {\boldsymbol {B^{T}e^{{\boldsymbol {A}}^{T}t}{\boldsymbol {x}}}}\right\Vert _{2}^{2}dt} 在任何t时都为正,因此 W c {\displaystyle {\boldsymbol {W}}_{c}} 是正定矩阵。 可控制性系统的其他特性在[1]中,以及可控制性中都有描述。 Remove ads离散时间,线性非时变系统 若考虑以下的离散时间系统 x [ k + 1 ] = A x [ k ] + B u [ k ] y [ k ] = C x [ k ] + D u [ k ] {\displaystyle {\begin{array}{c}{\boldsymbol {x}}[k+1]{\boldsymbol {=Ax}}[k]+{\boldsymbol {Bu}}[k]\\{\boldsymbol {y}}[k]={\boldsymbol {Cx}}[k]+{\boldsymbol {Du}}[k]\end{array}}} 其离散可控制性格拉姆矩阵是以下 n × n {\displaystyle n\times n} 的方阵 W d c = ∑ m = 0 ∞ A m B B T ( A T ) m {\displaystyle {\boldsymbol {W}}_{dc}=\sum _{m=0}^{\infty }{\boldsymbol {A}}^{m}{\boldsymbol {BB}}^{T}({\boldsymbol {A}}^{T})^{m}} A {\displaystyle {\boldsymbol {A}}} 若稳定(所有的特征值绝对值均小于1),也是以下离散李亚普诺夫方程的解 W d c − A W d c A T = B B T {\displaystyle W_{dc}-{\boldsymbol {A}}{\boldsymbol {W}}_{dc}{\boldsymbol {A^{T}}}={\boldsymbol {BB^{T}}}} A {\displaystyle {\boldsymbol {A}}} 若稳定(所有的特征值绝对值均小于1),而且 W d c {\displaystyle {\boldsymbol {W}}_{dc}} 也是正定矩阵,则此系统有可控制性。 更多相关的性质及证明在[2]。 Remove ads线性时变系统(LTV) 考虑以下的线性时变系统(LTV): x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) y ( t ) = C ( t ) x ( t ) {\displaystyle {\begin{array}{c}{\dot {\boldsymbol {x}}}(t){\boldsymbol {=A}}(t){\boldsymbol {x}}(t)+{\boldsymbol {B}}(t){\boldsymbol {u}}(t)\\{\boldsymbol {y}}(t)={\boldsymbol {C}}(t){\boldsymbol {x}}(t)\end{array}}} 其中矩阵 A {\displaystyle {\boldsymbol {A}}} , B {\displaystyle {\boldsymbol {B}}} 和 C {\displaystyle {\boldsymbol {C}}} 的元素会随时间而变化。其可控制性格拉姆矩阵为 n × n {\displaystyle n\times n} 矩阵,定义如下: W c ( t 0 , t 1 ) = ∫ 0 ∞ Φ ( t 1 , τ ) B ( τ ) B T ( τ ) Φ T ( t 1 , τ ) d τ {\displaystyle {\boldsymbol {W}}_{c}(t_{0},t_{1})=\int _{_{0}}^{^{\infty }}{\boldsymbol {\Phi }}(t_{1},\tau ){\boldsymbol {B}}(\tau ){\boldsymbol {B}}^{T}(\tau ){\boldsymbol {\Phi }}^{T}(t_{1},\tau )d\tau } 其中 Φ ( t , τ ) {\displaystyle {\boldsymbol {\Phi }}(t,\tau )} 为 x ˙ = A ( t ) x {\displaystyle {\boldsymbol {\dot {x}}}={\boldsymbol {A}}(t){\boldsymbol {x}}} 的状态转移矩阵。 系统 ( A ( t ) , B ( t ) ) {\displaystyle ({\boldsymbol {A}}(t),{\boldsymbol {B}}(t))} 有可控制性的充份必要条是存在 t 1 > t 0 {\displaystyle t_{1}>t_{0}} ,使得可控制性格拉姆矩阵 W c ( t 0 , t 1 ) {\displaystyle {\boldsymbol {W}}_{c}(t_{0},t_{1})} 为非奇异矩阵。 Remove ads格拉姆矩阵的性质 可控制性格拉姆矩阵 W c ( t 0 , t 1 ) {\displaystyle {\boldsymbol {W}}_{c}(t_{0},t_{1})} 有以下的性质: W c ( t 0 , t 1 ) = W c ( t 0 , t ) + Φ ( t , t 0 ) W c ( t , t 0 ) Φ T ( t , t 0 ) {\displaystyle {\boldsymbol {W}}_{c}(t_{0},t_{1})={\boldsymbol {W}}_{c}(t_{0},t)+{\boldsymbol {\Phi }}(t,t_{0}){\boldsymbol {W}}_{c}(t,t_{0}){\boldsymbol {\Phi }}^{T}(t,t_{0})} 可以由 W c ( t 0 , t 1 ) {\displaystyle {\boldsymbol {W}}_{c}(t_{0},t_{1})} 的定义,以及以下的状态转移矩阵性质来推导: Φ ( t 0 , t 1 ) = Φ ( t 1 , τ ) Φ ( τ , t 0 ) {\displaystyle {\boldsymbol {\Phi }}(t_{0},t_{1})={\boldsymbol {\Phi }}(t_{1},\tau ){\boldsymbol {\Phi }}(\tau ,t_{0})} 其他有关可控制性格拉姆矩阵的性质可以参考[3]。 Remove ads相关条目 可控制性 可观测性格拉姆矩阵 格拉姆矩阵 最小能量控制 参考资料Loading content...外部链接Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads