热门问题
时间线
聊天
视角

截角八面体

来自维基百科,自由的百科全书

截角八面體
Remove ads

几何学中,截角八面体[1]是一种具有十四个面的半正多面体,属于阿基米德立体也是个平行多面体。由6个正方形和8个正六边形组成,共有1436以及24顶点[2]。因为每个面皆具点对称性质,因此截角八面体也是一种环带多面体。同时,因为它具有正方形和六边形面,因此也是一种戈德堡多面体,其戈德堡符号为GIV(1,1)。另外,由于截角八面体也是一种排列多面体英语permutohedron[3][4],因此可以独立填满整个三维空间[5],而由截角八面体堆成的图形称为截角八面体堆砌[6]

事实速览 类别, 对偶多面体 ...

截角八面体的对偶多面体为四角化六面体。若截角八面体的边长为单位长,则其对偶多面体四角化六面体的边长会变成个单位长。

Remove ads

性质

截角八面体仅具有点可递性质,也就是截角八面体每一个顶点相邻面的组成都是一样的,都是一个四边形和两个六边形的公共顶点。但截角八面体不具面可递和边可递性质,因为截角八面体有两种面,四边形和六边形,边也不可递,因为截角八面体并不是所有组成边的相邻面都只有一种,截角八面体共有两种棱,一种为六边形与六边形的公共棱、另一种为六边形与四边形的公共棱。

由于截角八面体仅具有点可递性质,因此只能算是均匀多面体[7]中的半正多面体,不具拟正多面体性质。但这个多面体是阿几米德研究的13种半正多面体之一,因此截角八面体也是一种阿基米德立体[8]

结构

Thumb   Thumb

截角八面体可以从边长3a的正八面体切去六个底边长为a的四角锥构成。这些被切下来的棱锥体的底与侧面边长皆等长,因此其侧面皆为正三角形,底边长为a、底面积为a2,这些四角锥是正四角锥,是第一种詹森多面体,J1

这些被截下来的正四角锥其高h与斜高s为:

这些数据则确定能从正八面体构成截角八面体的截角切割深度。若太深则会变成截半八面体

Thumb[9]
Remove ads

坐标

Thumb Thumb
在(±2,±2,±2)范围内的平行投影 每个六边形面切割成六个正三角形产生了八个新的顶点,他们分别为(±1,±1,±1)的所有组合。

边长为2的平方根几何中心位于原点的截角八面体其顶点坐标为(0, ±1, ±2)的所有排列。

体积与表面积

截角立方体的体积,表面积,其中是该截半立方体的边长[2]

表面积 =
体积 =
Remove ads

作法

正八面体进行截角操作,也就是将正八面体的六个顶点切去并在被切掉的地方建立六个正方形面即可得到一个截角八面体

正交投影

更多信息 建立于, 顶点 ...

球面镶嵌

更多信息 平行投影, 施莱格尔投影(英语:Schlegel diagram) ...

分割

截角八面体可分割成正中央一个正八面体、其余每个面切成8三角帐塔,剩余的部分在分割成6个正四角锥[10]

更多信息 亏格 2, 亏格 3 ...

排列多面体

截角八面体是一种排列多面体英语permutohedron[3][4],可以以更“对称”的形式表示:四维空间中,(1,2,3,4)所有排列的坐标在三维子空间组成截角八面体。(对应的二维形状是正六边形:三维空间中,(1,2,3)所有排列的坐标在二维子空间组成正六边形。)

Thumb

相关多面体及镶嵌

更多信息 对称性: [3,3], (*332), [3,3]+, (332) ...
更多信息 对称性: [4,3], (*432), [4,3]+, (432) ...
Remove ads

堆砌

Thumb
截角八面体可独立密铺三维空间。
截角八面体堆砌

截角八面体可以独立填满整个三维空间,而这种由截角八面体堆砌出来的几何图形称为截角八面体堆砌

截角八面体堆砌三维空间内28个半正密铺之一,由截角八面体独立堆积而成,虽然他每个都全等、每皆等长,但其不能称为正密铺,因为虽然她只由一种胞,截角八面体组成,但是该胞不是正多面体,因此并非所有“面”皆全等,因此截角八面体堆砌只能称为半正堆砌。

其他堆砌
更多信息 截角八面体堆砌, 小斜方截半正方体堆砌 ...
过截角超方形
...
过截角立方体 过截角超立方体 过截角五维超立方体 过截角六维超立方体英语Bitruncated 6-cube 过截角七维超立方体英语Bitruncated 7-cube 过截角八维超立方体英语Bitruncated 8-cube
node 4 node_1 3 node_1  node 4 node_1 3 node_1 3 node  node 4 node_1 3 node_1 3 node 3 node  node 4 node_1 3 node_1 3 node 3 node 3 node  node 4 node_1 3 node_1 3 node 3 node 3 node 3 node  node 4 node_1 3 node_1 3 node 3 node 3 node 3 node 3 node 

参见

参考文献

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads