贝克隆德变换是两个非线性偏微分方程之间的一对变换关系[1]。
两个非线性偏微分方程
之间的贝克隆德变换,指的是这样一对关系
贝克隆德变换是求非线性偏微分方程精确解的一种重要的变换。
1876年瑞典数学家贝克隆德发现正弦-戈尔登方程的不同解u、v


之间有如下关系:[2]

这就是正弦-戈尔登方程的贝克隆德自变换。
将贝克隆德自变换第一式对t取微商,二式对x微商:
消除v即得
;
消除u项即得

贝克隆德变换常用于求正弦-戈尔登方程、高维广义Burger I型方程、高维广义Burger II型方程的精确解:[3]