热门问题
时间线
聊天
视角

庞特里亚金最大化原理

来自维基百科,自由的百科全书

Remove ads
Remove ads

庞特里亚金最大化原理(Pontryagin's maximum principle)也根据使用条件称为庞特里亚金最小化原理最大值原理最小值原理,是最优控制中的理论,是在状态或是输入控件有约束条件的情形下,可以找到将动力系统由一个状态到另一个状态的最优控制信号。此理论是苏俄数学家列夫·庞特里亚金及他的学生在1956年提出的[1]。这是变分法欧拉-拉格朗日方程的特例。

简单来说,此定理是指在所有可能的控制中,需让“控制哈密顿量”(control Hamiltonian)取极值,极值是最大值或是最小值则依问题以及哈密顿量的符号定义而不同。正式的用法,也就是哈密顿量中所使用的符号,会取到最大值,但是此条目中使用的符号定义方式,会让极值取到最小值。

是所有可能控制值的集合,则此原理指出,最优控制必须满足以下条件:

其中是最佳状态轨迹,而是最佳 协态轨迹[2]

此结果最早成功的应用在输入控制有限制条件的最小时间问题中,不过也可以用在状态有限制条件的问题中。

也可以推导控制哈密顿量的特殊条件。若最终时间固定,且控制哈密顿量不是时间的显函数,则:

若最终时间没有限制,则:

若在某一轨迹上满足庞特里亚金最大化原理,此原理是最佳解的必要条件哈密顿-雅可比-贝尔曼方程 提供了最佳解的充份必要条件,但该条件须在整个状态空间中都要成立。

Remove ads

最大化和最小化

此定理一开始的名称是庞特里亚金最大化原理(Pontryagin's maximum principle),其证明也是以控制哈密顿量最大化为基础。此原理最早的应用是要最大化火箭的终端速度。不过后来此定理大部分的应用是使性能指标最小化,因此常称为庞特里亚金最小化原理。庞特里亚金的书解出了要让性能指标最小化的问题[3]

符号

以下的内容会使用这些表示方式

Remove ads

最小化问题必要条件的正式叙述

以下是让泛函最小化的必要条件。令为在输入为时,动态系统的状态,且满足以下条件

其中

为可行控制的集合
为系统的结束时间。

控制需在所有内使目标泛函最小化,目标泛函随应用而定,可以写成

系统动态的限制可以用导入时变拉格朗日乘数向量的方式和相加,而拉格朗日乘数向量的元素称为系统的协态(costate)。因此可以建构在所有 哈密顿量为:

其中的转置。

庞特里亚金最小化原理提到最佳状态轨迹,最佳控制及对应的拉格朗日乘数向量必需最小化哈密顿量,因此

针对所有时间,也针对所有可能的控制输入。以下的式子也必须成立

而且也要满足以下的协态方程

若最终状态没有固定(其微分变异不为0),最终协态也要满足以下条件

上述(1)-(4)的条件是最佳控制的必要条件。公式(4)只有在没有固定时才需要成立。若是固定值,公式(4)不在必要条件中。

此解法可以应用在宇宙学和天体物理学中 [4]

Remove ads

相关条目

脚注

Loading content...

参考资料

外部链接

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads