热门问题
时间线
聊天
视角
本构关系
来自维基百科,自由的百科全书
Remove ads
Remove ads
在电磁学里,为了要应用宏观麦克斯韦方程组,必须分别找到场与场之间,和场与场之间的关系。这些称为本构关系的物理性质,设定了束缚电荷和束缚电流对于外场的响应。它们实际地对应于,一个物质响应外场作用而产生的电极化或磁化。[1]:44-45
本构关系式的基础建立于场与场的定义式:
- 、
- ;
其中,是电极化强度,是磁化强度。
本构关系式的一般形式为
- 、
- 。
在解释怎样计算电极化强度与磁化强度之前,最好先检视一些特别案例。
Remove ads
自由空间案例
假设,在自由空间(即理想真空)里,就不用考虑介电质和磁化物质,本构关系式变得很简单:[2]:2
- 、
- 。
将这些本构关系式代入宏观麦克斯韦方程组,则得到的方程组很像微观麦克斯韦方程组,当然,在得到的高斯定律方程和麦克斯韦-安培方程内,总电荷密度和总电流密度分别被自由电荷密度和自由电流密度替代。这符合期待的结果,因为,在自由空间里,没有束缚电荷、束缚电流和极化电流。
Remove ads
线性物质案例
- 、
- ;
将这些本构关系式代入宏观麦克斯韦方程组,可以得到方程组
除非这物质是均匀物质,不能从微分式或积分式内提出电容率和磁导率。通量的方程为
- 。
这方程组很像微观麦克斯韦方程组,当然,在得到的高斯定律方程和麦克斯韦-安培方程内,自由空间的电容率和磁导率分别被物质的电容率和磁导率替代;还有,总电荷密度和总电流密度分别被自由电荷密度和自由电流密度替代。这符合期待的结果,因为,在均匀物质内部,没有束缚电荷、束缚电流和极化电流,虽然由于不连续性,可能在表面会有面束缚电荷、面束缚电流或面极化电流。
Remove ads
一般案例
对于实际物质,本构关系并不是简单的线性关系,而是只能近似为简单的线性关系。从场与场的定义式开始,要找到本构关系式,必需先知道电极化强度和磁化强度是怎样从电场和磁场产生的。这可能是由实验得到(建立于直接测量),或由推论得到(建立于统计力学、传输力学(transport phenomena)或其它凝聚态物理学的理论)。所涉及的细节可能是宏观或微观的。这都要视问题的层级而定。
虽然如此,本构关系式通常仍旧可以写为
- 、
- 。
不同的是,和不再是简单常数,而是函数。例如,
- 色散或吸收:和是频率的函数。因果论不允许物质具有非色散性,例如,克拉莫-克若尼关系式。场与场之间的相位可能不同相,这导致和为复值,也导致电磁波被物质吸收。[2]:330-335
- 非线性:和都是电场与磁场的函数。例如,克尔效应[3]和波克斯效应(Pockels effect)。
- 各向异性:例如,双折射或二向色性(dichroism)。和都是二阶张量[4]:
- 、
- 。
- 双耦合各向同性(Bi-isotropy)或双耦合各向异性(Bi-anisotropy):在双耦合各向同性物质里,场与场分别各向同性地耦合于场与场[4]:
- 、
- ;
- 其中,与是耦合常数,每一种介质的内禀常数。
- 在双耦合各向异性物质里,场与场分别各向异性地耦合于场与场,系数、、、都是张量。
- 在不同位置和时间,场与场分别跟场、场有关:这可能是因为“空间不匀性”。例如,一个磁铁的域结构、异质结构或液晶,或最常出现的状况是多种材料占有不同空间区域。这也可能是因为随时间而改变的物质或磁滞现象。对于这种状况,场与场计算为[5][2]:14
- 、
- ;
实际而言,在某些特别状况,一些物质性质给出的影响微乎其微,这允许物理学者的忽略。例如,在低场强度状况,光学非线性性质可以被忽略;当频率局限于狭窄带宽内时,色散不重要;对于能够穿透物质的波长,物质吸收可以被忽略;对于微波或更长波长的电磁波,有限电导率的金属时常近似为具有无穷大电导率的完美金属(perfect metal),形成电磁场穿透的趋肤深度为零的硬障碍。
Remove ads
本构关系的演算
通常而言,感受到局域场施加的洛伦兹力,介质的分子会有所响应,从相关的理论计算,可以得到这介质的本构关系式。除了洛伦兹力以外,可能还需要给出其它作用力的理论模型,像涉及晶体内部晶格振动的键作用力,将这些作用力纳入考量,一并计算。
在介质内部任意分子的位置,其邻近分子会被电极化和磁化,从而造成其局域场会与外场或宏观场不同。更详尽细节,请参阅克劳修斯-莫索提方程。真实介质不是连续性物质,其局域场在原子尺度的变化相当剧烈,必需经过空间平均,才能形成连续近似。
这连续近似问题时常需要某种量子力学分析,像应用于凝聚态物理学的量子场论。请参阅密度泛函理论和格林-库波关系式(Green–Kubo relations)等等案例。物理学者研究出许多近似传输方程,例如,玻尔兹曼传输方程(Boltzmann transport equation)、佛克耳-普朗克方程(Fokker–Planck equation)和纳维-斯托克斯方程。这些方程已经广泛地应用于流体动力学、磁流体力学、超导现象、等离子模型(plasma modeling)等等学术领域。一整套处理这些艰难问题的物理工具已被成功地发展出来。另外,从处理像砾岩(conglomerate)或叠层材料(laminate)一类物质的传统方法演变出来的“均质化方法”,是建立于以“均质有效介质”来近似“非均质介质”的方法[6]。当激发波长超大于非均质性的尺度时,这方法正确无误[7][8][9]。
理论得到的答案必须符合实验测量的数据。许多真实物质的连续近似性质,是靠着实验测量而得到的[10]。例如,应用椭圆偏振技术得到的薄膜的介电性质。
Remove ads
参考文献
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads