热门问题
时间线
聊天
视角
武卡谢维奇逻辑
来自维基百科,自由的百科全书
Remove ads
在数学中,武卡谢维奇逻辑(Łukasiewicz logic)是非经典、多值逻辑。它最初由扬·武卡谢维奇定义为叫做“三价逻辑”的三值逻辑[1];它后来被推广为 n 值(对于所有有限 n)和无限多值变体,命题和一阶都有[2]。它属于t-规范模糊逻辑[3] 和亚结构逻辑[4]类。
实数值语义
无穷多值武卡谢维奇逻辑是实数值逻辑,其中来自命题演算的句子被指派上在 0 到 1 之间的任意精度的真值。求值有如下递归定义:
, , 和 的值明确给出自:
Remove ads
在这个定义下,求值满足如下条件:
和 满足
- 和 。
- 和 。
- 和 是连续性的。
- 和 在每个构成上是严格递增的。
- 和 在如下意义上是结合性的: 对于每个 。
所以 和 都是连续t-规范的。
- 和 。
- 是连续的。
Remove ads
引用
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads