热门问题
时间线
聊天
视角
莫德尔猜想
来自维基百科,自由的百科全书
Remove ads
莫德尔猜想(Mordell conjecture),又称法尔廷斯定理(Faltings's theorem),是一个由路易·莫德尔[1]提出的算术几何猜想,这猜想认为,任何有理数域上亏格数大于一的曲线至多只有有限多个有理点。这猜想于1983年为格尔德·法尔廷斯所证明[2],并从此改名为法尔廷斯定理,而之后这猜想被推广至任何代数数域上。
Remove ads
背景
设C为一个非特异的、位于有理数域上且亏格数为g的代数曲线,则C上的有理点可由下列关系决定:
证明
伊戈尔·沙法列维奇曾猜想说在一个固定的数域上有着固定的维度与极化度(polarization degree)、且在固定的位构成的有限集合之外有着良好简化(Good reduction)的交换簇之上,只有有限个同构类,而这即是沙法列维奇的有限猜想。[3]阿列克谢·帕辛使用现在称为帕辛技巧的方法,指出说沙法列维奇的有限猜想可推出莫德尔猜想。[4]
格尔德·法尔廷斯利用了泰特猜想一个情况已知的简化,以及包括内伦模型等源自代数几何的工具,证明了沙法列维奇的有限猜想。[5]而这证明的主要想法,是利用西葛尔模簇来比较高度函数中的法尔廷斯高度及古典高度。[a]
Remove ads
可得结果
法尔廷斯在1983年的论文可推出一系列先前受猜想的内容:
- 莫德尔猜想,也就是在代数数域上亏格数大于1的曲线只有有限多个有理点;
- 同类定理(Isogeny theorem),也就是带有同构泰特模(也就是带有伽罗瓦作用的Qℓ-模)的交换簇是同类的。
法尔廷斯定里的一个应用是费马最后定理的弱形式:对于任意大于等于4的固定整数n,an + bn = cn至多只有有限的原始整数解(也就是彼此互质的解),而这是因为对于这样的n而言,费马曲线 xn + yn = 1的亏格数大于1之故。
推广
由于莫德尔-韦伊定理之故,因此法尔廷斯定理可重述为一个关于带有交换簇A的有限生成子群Γ的曲线C的交点的叙述,因此可透过将其中交换簇A改成半交换簇(semiabelian variety)、将C改成A的任意子簇,以及将Γ改成A的任意有限秩子集的作法,将之推广为莫德尔-朗猜想,而这猜想由麦克·麦奎兰[9]在洛朗(Laurent)、雷诺、辛追(Hindry)、波伊大以及法尔廷斯等人成就的基础上,于1995年所证明。
法尔廷斯定理的另一个高维推广是邦别里-朗猜想,也就是若X是一个在数域k上的伪典型簇(也就是“一般类型”的代数簇),那么X(k)在扎里斯基拓扑的意义上并非稠密的。保罗·波伊大并提出了更加一般化的猜想。
函数域上的莫德尔猜想由尤里·马宁[10]以及汉斯·格劳尔特[11]所证明,在1990年,罗伯特·F·科尔曼找到并修补了马宁证明中的一个漏洞。[12]
Remove ads
注解
引用
参考资料
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads