维格纳 3-j 符号也称3-j符号,与量子力学中的克莱布希-高登系数有密切关系。 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ≡ ( − 1 ) j 1 − j 2 − m 3 2 j 3 + 1 ⟨ j 1 m 1 j 2 m 2 | j 3 − m 3 ⟩ . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\equiv {\frac {(-1)^{j_{1}-j_{2}-m_{3}}}{\sqrt {2j_{3}+1}}}\langle j_{1}m_{1}j_{2}m_{2}|j_{3}\,{-m_{3}}\rangle .} Remove ads反演关系 ⟨ j 1 m 1 j 2 m 2 | j 3 m 3 ⟩ = ( − 1 ) − j 1 + j 2 − m 3 2 j 3 + 1 ( j 1 j 2 j 3 m 1 m 2 − m 3 ) . {\displaystyle \langle j_{1}m_{1}j_{2}m_{2}|j_{3}m_{3}\rangle =(-1)^{-j_{1}+j_{2}-m_{3}}{\sqrt {2j_{3}+1}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&-m_{3}\end{pmatrix}}.} Remove ads对称性 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 2 j 3 j 1 m 2 m 3 m 1 ) = ( j 3 j 1 j 2 m 3 m 1 m 2 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{2}&j_{3}&j_{1}\\m_{2}&m_{3}&m_{1}\end{pmatrix}}={\begin{pmatrix}j_{3}&j_{1}&j_{2}\\m_{3}&m_{1}&m_{2}\end{pmatrix}}.} 位相 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( − 1 ) j 1 + j 2 + j 3 ( j 2 j 1 j 3 m 2 m 1 m 3 ) = ( − 1 ) j 1 + j 2 + j 3 ( j 1 j 3 j 2 m 1 m 3 m 2 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{2}&j_{1}&j_{3}\\m_{2}&m_{1}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{3}&j_{2}\\m_{1}&m_{3}&m_{2}\end{pmatrix}}.} ( j 1 j 2 j 3 − m 1 − m 2 − m 3 ) = ( − 1 ) j 1 + j 2 + j 3 ( j 1 j 2 j 3 m 1 m 2 m 3 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\-m_{1}&-m_{2}&-m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}.} ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 1 j 2 + j 3 − m 1 2 j 2 + j 3 + m 1 2 j 3 − j 2 j 2 − j 3 − m 1 2 − m 3 j 2 − j 3 + m 1 2 + m 3 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{1}&{\frac {j_{2}+j_{3}-m_{1}}{2}}&{\frac {j_{2}+j_{3}+m_{1}}{2}}\\j_{3}-j_{2}&{\frac {j_{2}-j_{3}-m_{1}}{2}}-m_{3}&{\frac {j_{2}-j_{3}+m_{1}}{2}}+m_{3}\end{pmatrix}}.} ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( − 1 ) j 1 + j 2 + j 3 ( j 2 + j 3 + m 1 2 j 1 + j 3 + m 2 2 j 1 + j 2 + m 3 2 j 1 − j 2 + j 3 − m 1 2 j 2 − j 1 + j 3 − m 2 2 j 3 − j 1 + j 2 − m 3 2 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}{\frac {j_{2}+j_{3}+m_{1}}{2}}&{\frac {j_{1}+j_{3}+m_{2}}{2}}&{\frac {j_{1}+j_{2}+m_{3}}{2}}\\j_{1}-{\frac {j_{2}+j_{3}-m_{1}}{2}}&j_{2}-{\frac {j_{1}+j_{3}-m_{2}}{2}}&j_{3}-{\frac {j_{1}+j_{2}-m_{3}}{2}}\end{pmatrix}}.} 里奇对称性包括72类对称性 symmetries.[1] [2] R = − j 1 + j 2 + j 3 j 1 − j 2 + j 3 j 1 + j 2 − j 3 j 1 − m 1 j 2 − m 2 j 3 − m 3 j 1 + m 1 j 2 + m 2 j 3 + m 3 {\displaystyle R={\begin{array}{|ccc|}\hline -j_{1}+j_{2}+j_{3}&j_{1}-j_{2}+j_{3}&j_{1}+j_{2}-j_{3}\\j_{1}-m_{1}&j_{2}-m_{2}&j_{3}-m_{3}\\j_{1}+m_{1}&j_{2}+m_{2}&j_{3}+m_{3}\\\hline \end{array}}} Remove ads参考文献Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads