连续统

以实数为元素的集合 来自维基百科,自由的百科全书

连续统(英语:continuum)在数学概念中是指,在实数集里实数可以连续变动,也就是说,实数集是个连续统。[注 1][注 2]

有序集

集合论中,连续统是一个拥有多于一个元素的线性序集,而且其序满足如下性质[注 3]

  1. 稠密:在任意两个元素之间存在第三个元素
  2. 无洞:有上界的非空子集一定有上确界

实数集即为连续统的例子;实际上它是连续统的原型。以下是连续统的几个例子:

  1. 序结构与实数集同构序同构)的集合,例如实数集里的任何开区间
  2. 扩展的实数轴,以及序同构于它的,比如单位区间
  3. 实的半开半闭区间如 (0,1] 等,以及其序同构。
  4. 拓扑学中有一种比实数线还要长的“长直线
  5. 非标准分析中的超实数

连续统的基数

康托的连续统假设有时会被叙述成“在连续统的基数自然数的基数之间不存在任何基数”,这里的“连续统”指的是实数集;连续统的基数即特指实数集的基数。

拓扑学

在点集拓扑学中,一个连续统是指任何非空的紧致连通度量空间[注 4]

按照以上定义,一个单点集也是连续统。拥有多于一个点的连续统称为非退化的连续统;由连通性和豪斯多夫性质,可知它一定含有无穷个点。连续统理论即是拓扑学中研究拓扑连续统的分支。其中一个有趣的问题是不可分解连续统的存在性:

  • 是否存在这样的连续统 C ,它可以写成两个连续统的并集,且这两个都是 C 的真子集?

答案是肯定的,第一个例子由鲁伊兹·布劳威尔给出[1]

注释

外部链接

参考

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.