热门问题
时间线
聊天
视角
阿依热尔曼猜想
来自维基百科,自由的百科全书
Remove ads
阿依热尔曼猜想(Aizerman's conjecture)或阿依热尔曼问题猜想(Aizerman problem)是非线性控制的猜想,认为一线性系统有非线性的回授,不过是在一个扇形的线性区间内,若线性系统在此扇形线性区间都稳定,则整个系统都会稳定。
阿依热尔曼猜想在一维系统成立,在二维系统是全域稳定的充份必要条件,而针对维度大于3的情形,这个猜想已找到反证[1][2],不过后来因此推导出(有效的)非线性控制全域稳定性准则。
阿依热尔曼猜想的数学描述
考虑一个系统,其中包括一个标量非线性的函数
- 其中P是常数n×n矩阵、q和r是常数n维向量、∗ 是转置算子、f(e)是标量函数,且 f(0)=0。假设非线性函数f是有扇型区间的上下限,也就是存在实数及,满足,且函数满足
阿依热尔曼猜想就是指此系统在全域稳定(有唯一稳定点,而且是全域吸引子)若所有在f(e)=ke, k ∈(k1,k2)下的线性系统都是渐近稳定。
存在阿依热尔曼猜想的反例,非线性函数在线性稳定的范围内,且系统除了唯一的稳定平衡点外,还有稳定的周期解—隐蔽振荡。[2][3][4][5]
卡尔曼猜想是强化版本的阿依热尔曼猜想,在非线性回授的部分要求回授的微分需在线性稳定区间内,结果也存在反例。
Remove ads
参考资料
延伸阅读
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads