热门问题
时间线
聊天
视角

随机偏微分方程

来自维基百科,自由的百科全书

Remove ads

随机偏微分方程(英文:Stochastic partial differential equation,SPDE)为偏微分方程引入了随机和随机系数,类似于随机微分方程之于常微分方程。随机微分方程在量子场论统计力学金融数学中有着广泛的应用。[1][2]

示例

最常见的SPDE之一是随机热传导方程[3] ,形式上可以写作

其中拉普拉斯算子表示时空白噪声。其他例子还有知名方程的随机版本,如波动方程[4]薛定谔方程[5]

Remove ads

讨论

一个困难是缺乏正规性。在一个空间维度中,随机热传导方程的解在空间上几乎只有1/2-赫尔德连续,在时间上则只有1/4-赫尔德连续。对于二维及更高维度,解甚至不是函数值,但可以理解为随机分布

对于线性方程,通常可以通过半群手段找到温和解(mild solution)。[6] 然而,当考虑非线性方程时,问题就开始出现了。例如

其中是多项式。在这种情况下,我们甚至不知道该如何理解这个方程。这样的方程在多维情形下也不会有数值解,因此也没有点。众所周知,分布空间没有积结构。这是此类理论的核心问题。这就需要某种形式的重整化

为规避某些特定方程的此类问题,早期的尝试是所谓的“普拉托-德布斯切技巧”(da Prato–Debussche trick),即把此类非线性方程作为线性方程的扰动来研究。[7]然而,这只能在非常受限的环境中使用,因为它既取决于非线性因子,也取决于驱动噪声项的正规性。近年来,这一领域急剧扩大,现在已有大型机制可以保证各种亚临界SPDE的局部存在性。[8]

Remove ads

另见

  • 布朗面
  • KPZ方程
  • 库什纳方程
  • 威克积

参考文献

Loading content...

阅读更多

Loading content...

外部链接

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads