热门问题
时间线
聊天
视角
黑格纳数
来自维基百科,自由的百科全书
Remove ads
黑格纳数(Heegner number)指满足以下性质,非平方数的正整数:其虚二次域Q(√−d)的类数为1,亦即其整数环为唯一分解整环[注解 1][1]。
![]() | 此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2016年12月28日) |
此条目需要扩充。 (2010年10月9日) |
黑格纳数只有以下九个: 1, 2, 3, 7, 11, 19, 43, 67, 163。(OEIS数列A003173)
高斯曾猜测符合上述特性的数只有九个,但未提出证明,1952年库尔特·黑格纳提出不完整的证明,后来由哈罗德·斯塔克提出完整的证明,即为斯塔克–黑格纳定理。
欧拉的质数多项式
欧拉的质数多项式如下:
在n = 1, ..., 40时会产生不同的40个质数,这相关于黑格纳数163 = 4 · 41 − 1.
欧拉公式,取值为1,... 40和以下的多项式
让取值0,... 39时等效,而Rabinowitz[2]证明了
在时,多项式为质数的充份必要条件为其判别式等于负的黑格纳数。
(若代入会得到一定不是质数,因此最大值只能取到)
1, 2和3不符合要求,因此符合条件的黑格纳数为,也就表示可以让欧拉公式产生质数的p为,这些数字被弗朗索瓦·勒·利奥奈称为欧拉的幸运数[3]。
Remove ads
拉马努金常数
这个数字是在1859年由数学家夏尔·埃尔米特发现[5],在1975年愚人节的《科学美国人》[6],《数学游戏》的专栏作家马丁·加德纳故意声称这个数字其实是整数,而印度数学天才斯里尼瓦瑟·拉马努金也预测了这个数很接近整数,因此以他的名字来命名。
Remove ads
注解
参考资料
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads