Remove adsCoshc函数常见于有关光学散射[1]、海森堡时空[2]和双曲几何学的论文中[3]其定义如下:[4][5] Coshc ( z ) = cosh ( z ) z {\displaystyle \operatorname {Coshc} (z)={\frac {\cosh(z)}{z}}} 它是下列微分方程的一个解: w ( z ) z − 2 d d z w ( z ) − z d 2 d z 2 w ( z ) = 0 {\displaystyle w\left(z\right)z-2\,{\frac {d}{dz}}w\left(z\right)-z{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)=0} Coshc 2D plot Coshc'(z) 2D plot 复域虚部 Im ( cosh ( x + i y ) x + i y ) {\displaystyle \operatorname {Im} \left({\frac {\cosh(x+iy)}{x+iy}}\right)} 复域实部 Re ( cosh ( x + i y ) x + i y ) {\displaystyle \operatorname {Re} \left({\frac {\cosh \left(x+iy\right)}{x+iy}}\right)} 绝对值 | cosh ( x + i y ) x + i y | {\displaystyle \left|{\frac {\cosh(x+iy)}{x+iy}}\right|} 一阶导数 sinh ( z ) z − cosh ( z ) z 2 {\displaystyle {\frac {\sinh(z)}{z}}-{\frac {\cosh(z)}{z^{2}}}} 导数实部 − Re ( − 1 − ( cosh ( x + i y ) ) 2 x + i y + cosh ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Re} \left(-{\frac {1-(\cosh(x+iy))^{2}}{x+iy}}+{\frac {\cosh(x+iy)}{(x+iy)^{2}}}\right)} 导数虚部 − Im ( − 1 − ( cosh ( x + i y ) ) 2 x + i y + cosh ( x + i y ) ( x + i y ) 2 ) {\displaystyle -\operatorname {Im} \left(-{\frac {1-(\cosh(x+iy))^{2}}{x+iy}}+{\frac {\cosh(x+iy)}{(x+iy)^{2}}}\right)} 导数绝对值 | − 1 − ( cosh ( x + i y ) ) 2 x + i y + cosh ( x + i y ) ( x + i y ) 2 | {\displaystyle \left|-{\frac {1-(\cosh(x+iy))^{2}}{x+iy}}+{\frac {\cosh(x+iy)}{(x+iy)^{2}}}\right|} Remove ads表示为其他特殊函数 Coshc ( z ) = ( i z + 1 / 2 π ) M ( 1 , 2 , i π − 2 z ) e 1 / 2 i π − z z {\displaystyle \operatorname {Coshc} (z)={\frac {\left(iz+1/2\,\pi \right){{\rm {M}}\left(1,\,2,\,i\pi -2\,z\right)}}{{{\rm {e}}^{1/2\,i\pi -z}}z}}} Coshc ( z ) = 1 2 ( 2 i z + π ) H e u n B ( 2 , 0 , 0 , 0 , 2 1 / 2 i π − z ) e 1 / 2 i π − z z {\displaystyle \operatorname {Coshc} (z)={\frac {1}{2}}\,{\frac {\left(2\,iz+\pi \right){\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {1/2\,i\pi -z}}\right)}{{{\rm {e}}^{1/2\,i\pi -z}}z}}} Coshc ( z ) = − i ( 2 i z + π ) W h i t t a k e r M ( 0 , 1 / 2 , i π − 2 z ) ( 4 i z + 2 π ) z {\displaystyle \operatorname {Coshc} (z)={\frac {-i\left(2\,iz+\pi \right){{\rm {\mathbf {W} hittakerM}}\left(0,\,1/2,\,i\pi -2\,z\right)}}{\left(4\,iz+2\,\pi \right)z}}} Remove ads级数展开 Coshc z ≈ ( z − 1 + 1 2 z + 1 24 z 3 + 1 720 z 5 + 1 40320 z 7 + 1 3628800 z 9 + 1 479001600 z 11 + 1 87178291200 z 13 + O ( z 15 ) ) {\displaystyle \operatorname {Coshc} z\approx ({z}^{-1}+{\frac {1}{2}}z+{\frac {1}{24}}{z}^{3}+{\frac {1}{720}}{z}^{5}+{\frac {1}{40320}}{z}^{7}+{\frac {1}{3628800}}{z}^{9}+{\frac {1}{479001600}}{z}^{11}+{\frac {1}{87178291200}}{z}^{13}+O\left({z}^{15}\right))} Remove ads图集 Coshc abs complex 3D Coshc Im complex 3D plot Coshc Re complex 3D plot Coshc'(z) Im complex 3D plot Coshc'(z) Re complex 3D plot Coshc'(z) abs complex 3D plot Coshc'(x) abs density plot Coshc'(x) Im density plot Coshc'(x) Re density plot 参见 Tanc函数 Tanhc函数 Sinhc函数 参考文献Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads