DP 方程(Degasperis-Procesi equation)是一个模拟弥散介质中非线性波动非线性偏微分方程: u t − u x x t + 2 κ u x + 4 u u x = 3 u x u x x + u u x x x {\displaystyle \displaystyle u_{t}-u_{xxt}+2\kappa u_{x}+4uu_{x}=3u_{x}u_{xx}+uu_{xxx}} Degasperis-Procesi equation plot Degasperis-Procesi equation animation Remove ads解析解 DP方程有解析解[1] A ( x ) := b 3 + 3 ∗ b 3 ∗ ( ( 1 − ( 1 / 4 ) ∗ p 2 ) ( 1 − p 2 ) − 1 ) ∗ ( ( 4 ∗ ( 1 − ( 1 / 4 ) ∗ p 2 ) ( 1 − p 2 ) − 1 ) ( ( 2 ∗ ( 1 − ( 1 / 4 ) ∗ p 2 ) ) ( 1 − p 2 ) − 1 + ( 1 − ( 1 / 4 ) ∗ p 2 ( 1 − p 2 ) ) ∗ c o s h ( x ) ) {\displaystyle A(x):=b^{3}+3*b^{3}*{\frac {({\frac {(1-(1/4)*p^{2})}{(1-p^{2})}}-1)*({\frac {(4*(1-(1/4)*p^{2})}{(1-p^{2})}}-1)}{((2*{\frac {(1-(1/4)*p^{2}))}{(1-p^{2})}}-1+{\sqrt {\frac {(1-(1/4)*p^{2}}{(1-p^{2}))}}}*cosh(x))}}} B ( x , t ) := x p + 4 ∗ a 2 ∗ t + l o g ( ( α + 1 + e x p ( x ∗ ( α − 1 ) ) ) ( a l p h a − 1 + ( e ) ( x ∗ ( α + 1 ) ) ) ) {\displaystyle B(x,t):={\frac {x}{p}}+4*a^{2}*t+log({\frac {(\alpha +1+exp(x*(\alpha -1)))}{(alpha-1+(e)^{(}x*(\alpha +1)))}})} 其中 a l p h a := ( ( 2 ∗ a − 1 ) ∗ ( a + 1 ) ( ( 2 ∗ a + 1 ) ∗ ( a − 1 ) ) ) ( 1 / 2 ) {\displaystyle alpha:={\frac {((2*a-1)*(a+1)}{((2*a+1)*(a-1)))^{(}1/2)}}} 代入, 取参数p = .3, b = 1.1 A ( x ) = 1.331 + .9764 ( 1.148 + 1.036 ∗ c o s h ( x ) ) {\displaystyle A(x)=1.331+{\frac {.9764}{(1.148+1.036*cosh(x))}}} B ( x , t ) = 3.33 ∗ x + 4.2967 ∗ t + l n ( ( 5.418 + e x p ( 3.418 ∗ x ) ) ( 3.418 + e x p ( 5.4181 ∗ x ) ) ) {\displaystyle B(x,t)=3.33*x+4.2967*t+ln({\frac {(5.418+exp(3.418*x))}{(3.418+exp(5.4181*x))}})} Remove ads参考文献Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads