热门问题
时间线
聊天
视角
E-UTRA
来自维基百科,自由的百科全书
Remove ads
E-UTRA(N)(Evolved Universal Terrestrial Radio Access (Network),演进的通用陆面无线接入(网络)),属于3GPP LTE 的空中界面[1],目前是 3GPP 的第八版本。与 HSPA 不同的是,LTE 的 E-UTRA 系一全新的系统,绝不相容于W-CDMA。它提供了更高的传输速率,低延迟和最佳化数据包的能力,用OFDMA无线接入给下行连接,SC-FDMA给上行连接。

特色
E-UTRA 具有如下的特色:
- 峰值下载速率(Peak download rates)为292 Mbit/s的为4x4的天线,143 Mbit/s的天线为2x2的20 MHz的频谱[2]。
- 峰值上传速率71 Mbit / s的每20 MHz的频谱[2]。
- 弹性化的带宽在1.25 MHz到20 MHz之间. :1.4 MHz,3 MHz,5 MHz,15 MHz和20 MHz的标准化。 相较之下, W-CDMA 一般只使用5 MHz频谱。
- 频谱效率(频谱效率) 增加到 2-4 倍,远较 3GPP (HSPA) release 6 要好。
- 低数据传输延迟
- 支持终端移动速度高达350公里/小时或500公里/小时(取决于频段)。
- 同时支持FDD和TDD的复式以及半双工FDD相同的无线接入技术。
- 支持所有目前使用的频段的IMT系统由ITU-R的。
- 相较于3G网络,同样使用femtocell和picocell的小半径基站,然macrocell半径超过100公里,覆盖距离显著提升。
- 简化的体系结构:EUTRAN网络仅由eNodeB组成
- 支持互操作(inter-operation)与其他系统(如GSM/EDGE/UMTS/CDMA2000/WiMAX……)
- 封包交换(Packet switched)的无线接口。
Remove ads
基本原理
虽然随着UMTS与HSDPA技术和HSUPA技术及其发展,提供高数据传输速率的无线数据使用量预计将继续大幅增加,在未来几年由于需求的增加和提供的服务和内容上的搬迁,需要继续为最终用户削减成本。预计这一增长不仅需要更快的网络和无线电接口,但也更符合成本效益比,是现行标准可能的演变。 因此,3GPP的财团提出了要求。新的无线电接口(EUTRAN)和核心网络演进(系统架构演进SAE的),将满足这种需要。
EUTRAN 协定堆叠
EUTRAN 协定堆叠包含有[3]:

- 实体层[4]:执行从MAC所有讯息传输通道在空中接口。
- MAC层[5]:MAC子层提供了一组逻辑通道,它的RLC子层复用物理层到传输通道。
- RLC[6]:用于传送 PDCP 的 PDUs。它可以在3种不同模式的可靠性提供依据。 根据这个模式下,它可以提供: ARQ的错误校正,分割/串联的PDU,重新排序为序列交货,重复检测等等。
- PDCP[7]:对于RRC层提供数据传输的加密和完整性保护。
- RRC[8]:播的系统信息相关的接入层和运输的非接入层 (NAS)的消息。
接口层协议栈的EUTRAN:
实体层(L1)的设计
E-UTRA采用正交频分复用(OFDM),多输入-多输出(MIMO)天线技术,根据不同的类别,可以使用终端以及波束形成的下行,以支持更多的用户,更高的数据传输速率和较低的处理能力需要对每一个手机。
EUTRAN 实体通道与讯号
下行有下列的实体通道[10]:
- 实体控制通道(Physical Downlink Control Channel, PDCCH)承载各种各样的控制信息, 自适应的重传需要通过PDCCH进行上行授权.
- 实体控制格式指示通道(Physical Control Format Indicator Channel, PCFICH)用于通知 PDCCH 的长度.
- 实体混合ARQ指示通道(Physical Hybrid ARQ Indicator Channel, PHICH)是使ACK/NACK的传输独立于 PDCCH的配置。PHICH占用的RE是在PBCH中指示的。
- 实体下行共享通道(Physical Downlink Shared Channel, PDSCH)用于承载来自传输信道DSCH的数据. PDSCH 上有支援 QPSK, 16QAM 以及 64QAM.
- 实体组播通道(Physical Multicast Channel, PMCH)用于使用单一频道(Single Frequency Network)组播频道。
- 实体广播通道(Physical Broadcast Channel, PBCH)用于在Cell内传播系统基本资讯。
以及下列的讯号:
- 同步器 (PSS and SSS) 是指 UE 发现 LTE cell 和执行初始同步。
- 参考信号 (cell specific, MBSFN, and UE specific) 用于UE 针对不同的通道进行通道估计。
- 定位参考信号(Positioning reference signals, PRS), 在第九个版本中加入, 是指 UE 使用 OTDOA 定位 (multilateration的一种)
Remove ads
上行支援三种实体通道:
- 实体随机接入通道(Physical Random Access Channel, PRACH)是手机发出的请求识别讯号[11]。
- 实体上行共享通道(Physical Uplink Shared Channel, PUSCH)用于承载来自传输信道USCH的数据。PUSCH 通道上可以存在TFCI。PDSCH 可支援 QPSK 模组,16QAM的并且根据用户设备类64QAM调制方式。PUSCH 是唯一的通道, 因为更大的带宽, 要使用 SC-FDMA。
- 实体上行控制通道(Physical Uplink Control Channel, PUCCH)用于承载控制资讯. 请注意,仅包含控制信息的上行研究DL承认以及相关的CQI报告,所有的UL编码和分配参数已知的网络侧,并传讯给 UE在PDCCH。
以及下列的讯号:
- 参考信号(Reference signals, RS):RS存在于每个RB中,RS的位置会因发射天线的数量、CP的形式等不同而不同。
- 探测参考信号(Sounding reference signals, SRS):由enodeB使用于评估上行通道, SRS是UE 发送的全频带参考信号。
Remove ads
使用者设备 (UE) 分类
在 3GPP 第 10 版协议中定义的 8 种 LTE UE 工作类型定义[2] 所取得最大数据速率和MIMO功能的支持.
注1:L1的数据传输速率传送数据不包括不同协议层间的开销损耗。
注2:Category 8指定的3.0 Gbps/1.5 Gbps是扇区级能接近的总数据峰值速率。单个用户的实际最大数据速率为1.2 Gbps的(下行)和600 Mbps(上行)[12]。
注3:最大数据传输速率给出的是在使用 20 MHz 带宽时的速率。 当适用的带宽更小时最大数据传输速率将会更低。
Remove ads
EUTRAN发布
- 版本8,2008年定版,是第一份LTE标准。
- 版本9,2009年定版,包括一些增加的实体层,如dual layer (MIMO)的波束传输(beamforming transmission)或定位(positioning)支持。
- 发布10,2011年定版,引入LTE强化功能,如载波聚合(carrier aggregation),上行的SU-MIMO或中继(relay),用于处理L1峰值数据(L1 peak data)速率增加。
所有LTE的设计都保持向下相容性,版本8的client可以在版本10的网络上执行。
具体频带
![]() |
3GPP TS 36.101中,表 5.5-1 的“E-UTRA工作频段”和 5.6.1-1 的“E-UTRA信道带宽”,[13]下表中列出指定频段的LTE和每个上市波段的信道带宽支持:
Remove ads
各地区的部署情况
下面的列表显示了标准化的LTE频段及其使用区域,主要的LTE频带以 粗体 显示。
- EUTRAN 工作频段号双工模式为FDD的 I(1), III(3), VII(7), XXVIII(28),双工模式为TDD的 XXXVIII(38), XL(40) 适用于ITU的 1, 2, 3 类地区未来进行国际漫游
- EUTRAN 工作频段号双工模式为FDD的 VIII(8) 长期来看未来可允许在ITU的 1, 2, 3 类地区进行国际漫游
- EUTRAN 工作频段号双工模式为FDD的 XX(20) 适合在ITU的1类(欧洲/中东/非洲)地区漫游
- EUTRAN 工作频段号双工模式为FDD的 II(2), IV(4) 适合在ITU的2类(美洲)地区漫游
Remove ads
注释
参见
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads