热门问题
时间线
聊天
视角

多格骨牌

来自维基百科,免费的百科全书 来自维基百科,自由的百科全书

多格骨牌
Remove ads

多格骨牌(Polyomino),又称多连块多连方多方块多连方块,是由全等正方形连成的图形,包括四格骨牌五格骨牌六格骨牌等,n格骨牌的个数为(镜射或旋转视作同一种):

1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, ... (OEIS数列A000105

除了n=0, 1, 2的显然易见的条件以外,只有n=5的时候才能用所有的n格骨牌填满一个长方形(见五格骨牌#长方形填充),n=3的情形显然无解,对n=4和n=6无解的证明需要使用肢解西洋棋盘问题的概念,而时,n格骨牌中有些骨牌的中间有空洞,因此也无解。

Thumb
12个五格骨牌形成一个8×8平方,删除中间的2x2平方
Thumb
35个六格骨牌(两面),不考虑对称相同则有60个片面骨牌。[1] 不同颜色代表不同对称性类型。
Thumb
94个六格骨牌的密铺
Remove ads

列表

Thumb
7种片面四格骨牌 = 4)
Thumb
12种両面五格骨牌 = 5)。每个骨牌使用一个拉丁字母的字母。

多格骨牌有三种,以对称分类:

  1. 自由(两面)骨牌(刚体):平移转动反射Glide reflection英语Glide reflection;可以包括洞以及单连通(无洞)的骨牌
  2. 一片面:平移转动(不可反射)
  3. 固定(有向):平移(不可转动、不可反射)
更多信息 ...
Remove ads

计算算法

渐近分析

若A(n)是自由n格骨牌的总数,则有猜想说明

其中。但是这个是未解决的问题,缺乏证明。[7]

但是有证明表示A为指数增长[8][9]

密铺

这些问题有些是NP完全的,或与递归集合有关。

平面

任何少于或等于六格的骨牌都可以铺满整个平面,因为它们都满足康威准则,而在全部108种七格骨牌中,有101种满足康威准则,有104种可以铺满整个平面,另外4种(包括唯一一个中间有洞的那种)无法铺满整个平面,至于369种八格骨牌则有320种满足康威准则,有343种可以铺满整个平面;1285种九格骨牌中则有960种满足康威准则,有1050种可以铺满整个平面。

长方形

Thumb
L骨牌有次数2

若需要至少n个多格骨牌P覆盖任何长方形(或矩形的格子),则n是P的次数(order)。若一个多格骨牌不可以覆盖(如Z形的四格骨牌),则其次数是未定义的。[11][1][12]

Thumb
可以使用11个六格骨牌密铺长方形

L形骨牌有次数2。[13]

次数的骨牌存在(n是整数)。[12]

次数3的骨牌不存在。[14][12]

可不可以使用5、7或9个骨牌密铺一个长方形这个问题仍未解答。有次数2的骨牌P,可以使用11个P覆盖一个更大的长方形。[15][1][12]

更大奇数次数的骨牌存在。[16][17]

截至2020年,有两个未解决的问题:

  • 奇数次数的多格骨牌存在吗?
  • 若可以用n个骨牌密铺一个长方形,且n是奇数,最小的n为何?现在已知n最多为11。
Remove ads

谜题和游戏

最小面积

若可以用骨牌A覆盖每个n格骨牌,则A是共同超形式(common superform、CS)。若A是共同超形式中面积最小的那个,则A是最小共同超形式(minimal common superform、MCS)。比如,五格骨牌的MCS是下面两个九格骨牌。无论P是哪一个五格骨牌,P都可以放在这两个骨牌里。[1][12][18]

  ###     ###
#####    #####
  #       #

参见

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads