热门问题
时间线
聊天
视角
弗拉基米尔·瓦普尼克
俄羅斯數學家 来自维基百科,自由的百科全书
Remove ads
弗拉基米尔·纳乌莫维奇·瓦普尼克(俄语:Владимир Наумович Вапник,英语:Vladimir Naumovich Vapnik,1936年12月6日—)是一名俄裔美国计算机科学家、研究人员和学者。他是统计学习的VC理论的主要开发者之一[1],也是支持向量机方法和支持向量聚类算法的共同发明者[2]。
Remove ads
早年生活和教育
瓦普尼克出生在苏联的一个犹太家庭[3],1958年在乌兹别克撒马尔罕的乌兹别克州立大学获得数学硕士学位,1964年在莫斯科控制科学研究所获得统计学博士学位。1961年至1990年,他在该研究所工作,并成为计算机科学研究部门的负责人[4]。
学术生涯
1990年底,瓦普尼克移居美国,加入位于纽泽西州霍姆德尔镇区的AT&T贝尔实验室自适应系统研究部门。在AT&T期间,瓦普尼克和他的同事们做了支持向量机的工作,他在搬到美国之前也曾做过这个工作。他们在机器学习界感兴趣的一些问题上展示了其性能,包括手写识别。该小组后来在1996年AT&T拆分朗讯科技时成为AT&T实验室的图像处理研究部门。2000年,瓦普尼克和神经网路专家哈瓦·西格尔曼开发了支持向量聚类算法,使该算法能够在没有标签的情况下对输入进行分类——成为使用中最普遍的数据聚类应用之一。瓦普尼克于2002年离开AT&T,加入位于纽泽西州普林斯顿的NEC实验室机器学习组。他还从1995年起在伦敦大学皇家霍洛威学院担任计算机科学和统计学教授,并从2003年起在纽约市哥伦比亚大学担任计算机科学教授一职[5]。截至2021年2月1日,他的h指数为86,总体而言,他的出版物已被引用226,597次[6]。他的《统计学习理论的性质》一书就被引用了91,650次。
2014年11月25日,瓦普尼克加入Facebook人工智智慧研究部[7],与他的长期合作者杰森·韦斯顿(Jason Weston)、莱昂·伯托、罗南·科洛贝尔(Ronan Collobert)和杨立昆一起工作[8]。 2016年,他还加入了Vencore实验室。
Remove ads
荣誉
瓦普尼克于2006年入选美国国家工程院。他获得了2005年伽伯奖[9]、2008年帕里斯·卡内拉基斯奖、2010年神经网路先锋奖[10]、2012年IEEE弗兰克·罗森布拉特奖、2012年本杰明·富兰克林计算机和认知科学奖[4]、2013年NEC C&C基金会的C&C奖[11]、2014年坎佩·德·费里特奖、2017年IEEE约翰·冯·诺伊曼奖章[12]。2018年,他获得伦敦大学的科尔莫戈罗夫奖章,并发表科尔莫戈罗夫讲座[13]。2019年,瓦普尼克获得BBVA基金会知识前沿奖。
出版书籍
- On the uniform convergence of relative frequencies of events to their probabilities, co-author A. Y. Chervonenkis, 1971
- Necessary and sufficient conditions for the uniform convergence of means to their expectations, co-author A. Y. Chervonenkis, 1981
- Estimation of Dependences Based on Empirical Data, 1982
- The Nature of Statistical Learning Theory, 1995
- Statistical Learning Theory (1998). Wiley-Interscience, ISBN 0-471-03003-1.
- Estimation of Dependences Based on Empirical Data, Reprint 2006 (Springer), also contains a philosophical essay on Empirical Inference Science, 2006
Remove ads
参考资料
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads