热门问题
时间线
聊天
视角
整数模n乘法群
来自维基百科,自由的百科全书
Remove ads
在同余理论中,模 n 的互质同余类组成一个乘法群,称为整数模 n 乘法群,也称为模 n 既约剩余类。在环理论中,一个抽象代数的分支,也称这个群为整数模 n 的环的单位群(单位是指乘法可逆元)。
Remove ads
这个群是数论的基石,在密码学、整数分解和素性测试均有运用。例如,关于这个群的阶(即群的“大小”),我们可以确定如果 n 是质数当且仅当阶数为 n-1。
Remove ads
群公理
容易验证模 n 互质同余类在乘法运算下满足阿贝尔群的公理。
- 互质同余类的乘法是良好定义:a 与 n 互质,当且仅当 gcd(a, n) = 1. 同余类中的整数a ≡ b (mod n) 满足gcd(a, n) = gcd(b, n), 因此一个整数与 n 互质当且仅当另一个整数也与 n 互质.
- 恒同: 1 是恒同; 1所在的同余类是唯一的乘法恒同类
- 闭:如果 a 和 b 都与 n 互质,那么 ab 也是;因为gcd(a, n) = 1 与 gcd(b, n) = 1 意味着 gcd(ab, n) = 1, 与 n 互质的同余类在乘法下是封闭的。
- 逆:找 x 满足 ax ≡ 1 (mod n) 等价于解 ax + ny = 1,可用欧几里得算法求出x,并且x在模n的同余类里。当 a 与 n 互质, 由于 gcd(a, n) = 1 ,根据 裴蜀定理 存在整数 x 与 y 满足 ax + ny = 1. 注意到由等式 ax + ny = 1 可推出 x 与 n 互质, 所以乘法逆元属于群.
- 结合性和交换性:由整数的相应事实以及模 n 运算是一个环同态推出。由于同余类a ≡ a' 与 b ≡ b' (mod n) 的整数乘法意味着 ab ≡ a'b' (mod n). 这可推出乘法满足结合律、交换律。
Remove ads
记法
整数模 n 环记作 或 (即整数环模去理想 nZ = (n) ,由 n 的倍数组成)或 因作者所喜,它的单位群可能记为 或类似的记号,本文采用
Remove ads
结构
模 2 只有一个互质同余类 1,所以 平凡。
模 4 有两个互质同余类,1 和 3,所以 两元循环群。
模 8 有四个互质同余类,1, 3, 5 和 7,每个平方都是 1,所以 Klein 四元群。
模 16 有八个互质同余类,1, 3, 5, 7, 9, 11, 13 和 15。 为 2-扭子群(即每个元素的平方为 1),所以 不是循环群。3的幂次: 是一个 4 阶子群,5 的幂次也是,。所以 。
以上 8 和 16 的讨论对高阶幂次 2k, k > 2[1] 也成立: 是 2-扭子群(所以 不是循环)而 3 的幂次是一个2k- 2 子群,所以 。
Remove ads
对奇质数的幂 pk,此群是循环群:[2]
Remove ads
中国剩余定理[3] 说明如果 那么环 每个质数幂因子相应的环的直积:
类似地, 的单位群是每个质数幂因子相应群的直积:
Remove ads
阶数
Remove ads
指数
Remove ads
生成元
是循环群当且仅当 这在 n 为奇质数的幂次、奇质数幂次 2 倍、2 和 4 成立,此时也称一个生成元为模 n 的原根。
因为所有 n = 1, 2, ..., 7 是循环群,上述结论的另一种说法是:如果 n < 8 那么 有原根;如果 n ≥ 8,且不能被 4 或者两个不同的奇质数整除, 有原根。( A033948 = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, 23, 25, 26, 27, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 50, ... )
一般情形每个直积因子循环有一个生成元。
列表
这个表列出了较小 n 的结构和生成元。生成元不是惟一(mod n)的,比如 (mod 16) 时 {–1, 3} 和{–1, 5} 都可以。生成元以和直积因子相同的顺序列出。
以 n=20 为例。 意味着 的阶数是 8(即有 8 个小于 20 的正整数与其互质); 说明任何和20互质的数的 4 次幂≡ 1(mod 20);至于生成元,19 的指数为2,3 的指数为 4,而任何 中元素都是 19a × 3b 的形式,这里 a 为 0 或 1,b 为 0, 1, 2, 或 3。
19 的幂是 {±1},3 的幂为 {3, 9, 7, 1}。后者和他们的负数 (mod 20),{17, 11, 13, 19} 是所有小于 20 且与其互质的数。19 的指数为 2 而 3 的指数为 4 意味着任何 中数的 4 次幂 ≡ 1 (mod 20)。
Remove ads
参见
- Lenstra 椭圆曲线分解,Lenstra给出的基于椭圆曲线的整数因子分解算法。
注释
参考文献
外部链接
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads