热门问题
时间线
聊天
视角

正五边形

邊長和內角相等的五邊形 来自维基百科,自由的百科全书

正五边形
Remove ads

正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用来表示。

事实速览 正五边形, 类型 ...
Remove ads

边与角

正五边形的中心角为72,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。

边长边长
边长边长
对角线长

其中外接圆半径

边长为的正凸五边形面积可以将之分割成5个等腰三角形计算:

正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况,其中不包括正五边形。[1]

Remove ads

面积公式推导

正多边形面积公式为:

其中,周长边心距。正五边形的可由三角函数计算:

其中,是正五边形的边长。

Remove ads

内切圆半径

正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径边心距相同,并且可以尤其边长来决定。

其中,为内切圆半径与边心距相同、t为正五边形边长。

构造

Thumb
Thumb

里士满提出了一个构造正五边形的方法[2],并且在克伦威尔的《多面体》中被进一步讨论。[3]

右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。单位圆圆心,是圆半径的中点。是位于垂直于的另外一条半径的圆周上。作的角平分线,令的角平分线与的交点。作过平行于的直线,令之与圆相交的交点为,则为正五边形的边长。

这条边的长度可以利用圆下方的两个直角三角形。利用勾股定理,较大的三角形斜边为。小三角形其中一股h可由半角公式求得:

其中,角可由大三角形求得,其值为:

由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长可借由再带一次勾股定理得:

欲求出五边形边长可透过左侧的三角形,由勾股定理得:

Thumb
使用圆规与直尺建构出正五边形。

五边形边长为:

得到了正确的结果[4]因此此种构造正五边形的方法是有效的。

约西元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。

Remove ads

物理方法

打一个反手结的长条纸张

正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads